Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo dòng 5 của tam giác Pascal, ta có:
(a + 2b)5= a5 + 5a4 (2b) + 10a3(2b)2 + 10a2 (2b)3 + 5a (2b)4 + (2b)5
= a5 + 10a4b + 40a3b2 + 80a2b3 + 80ab4 + 32b5
b) Theo dòng 6 của tam giác Pascal, ta có:
(a - √2)6 = [a + (-√2)]6 = a6 + 6a5 (-√2) + 15a4 (-√2)2 + 20a3 (-√2)3 + 15a2 (-√2)4 + 6a(-√2)5 + (-√2)6.
= a6 - 6√2a5 + 30a4 - 40√2a3 + 60a2 - 24√2a + 8.
c) Theo công thức nhị thức Niu – Tơn, ta có:
(x - )13= [x + (- )]13 = Ck13 . x13 – k . (-)k = Ck13 . (-1)k . x13 – 2k
Nhận xét: Trong trường hợp số mũ n khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.
Bài 1:
\(\left(x^{-\frac{1}{5}}+x^{\frac{1}{3}}\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^{-\frac{1}{5}}\right)^k\left(x^{\frac{1}{3}}\right)^{10-k}=\sum\limits^{10}_{k=0}C_{10}^kx^{\frac{10}{3}-\frac{8k}{15}}\)
Trong khai triển trên có 11 số hạng nên số hạng đứng giữa có \(k=6\)
\(\Rightarrow\) Số hạng đó là \(C_{10}^6x^{\frac{10}{3}-\frac{48}{15}}=C_{10}^6x^{\frac{2}{15}}\)
Bài 2:
\(\left(1+x^2\right)^n=a_0+a_1x^2+a_2x^4+...+a_nx^{2n}\)
Cho \(x=1\Rightarrow2^n=a_0+a_1+...+a_n=1024=2^{10}\)
\(\Rightarrow n=10\)
\(\left(1+x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^kx^{2k}\)
Số hạng chứa \(x^{12}\Rightarrow2k=12\Rightarrow k=6\) có hệ số là \(C_{10}^6\)
Bài 3:
\(\left(x-\frac{1}{4}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(-\frac{1}{4}\right)^{n-k}\)
Với \(k=n-2\Rightarrow\) hệ số là \(C_n^{n-2}\left(-\frac{1}{4}\right)^2=\frac{1}{16}C_n^2\)
\(\Rightarrow\frac{1}{16}C_n^2=31\Rightarrow C_n^2=496\Rightarrow n=32\)
Bài 4:
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^nC_n^n\)
Cho \(x=2\) ta được:
\(\left(1+2\right)^n=C_n^0+2C_n^1+2^2C_n^2+...+2^nC_n^n\)
\(\Rightarrow S=3^n\)
Bài 5:
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^{2k}C_n^{2k}+x^{2k+1}C_n^{2k+1}+...\)
Cho \(x=-1\) ta được:
\(0=C_n^0-C_n^1+C_n^2-C_n^3+...+C_n^{2k}-C_n^{2k+1}+...\)
\(\Rightarrow C_n^0+C_n^2+...+C_n^{2k}+...=C_n^1+C_n^3+...+C_n^{2k+1}+...\)
Bài 6:
\(\left(1-4x+x^2\right)^5=\sum\limits^5_{k=0}C_5^k\left(-4x+x^2\right)^k=\sum\limits^5_{k=0}\sum\limits^k_{i=0}C_5^kC_k^i\left(-4\right)^ix^{2k-i}\)
Ta có: \(\left\{{}\begin{matrix}2k-i=5\\0\le i\le k\le5\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;3\right);\left(3;4\right);\left(5;5\right)\)
Hệ số: \(\left(-4\right)^1.C_5^3C_3^1+\left(-4\right)^3C_5^4.C_4^3+\left(-4\right)^5C_5^5.C_5^5\)
\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)
Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn
Vậy trong khai triển trên ko có số hạng chứa \(x^8\)
b/ \(\left(1-x^2+x^4\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)
\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)
Hệ số của số hạng chứa \(x^{16}\):
\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)
c/ SHTQ của khai triển \(\left(1-2x\right)^5\) là \(C_5^k\left(-2\right)^kx^k\)
Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)
SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)
ta có : \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}=\sum\limits^{12}_{k=0}C^k_{12}\left(\dfrac{x}{3}\right)^{12-k}.\left(-1\right)^k\left(\dfrac{3}{x}\right)^k\)
\(=\sum\limits^{12}_{k=0}C^k_{12}\left(-1\right)^k\dfrac{\left(x\right)^{12-2k}}{3^{12-2k}}\)
\(\Rightarrow\) để có số hạng chứa \(x^4\) thì \(12-2k=4\Leftrightarrow k=4\)
\(\Rightarrow\) hệ số của số hạng chứa \(x^4\) là : \(\dfrac{C^4_{12}\left(-1\right)^4}{3^4}=\dfrac{55}{9}\)
vậy ............................................................................................................
a/ \(\left(x^3+x^{-\frac{2}{3}}\right)^{60}\)
SHTQ: \(C_{60}^k\left(x^3\right)^k\left(x^{-\frac{2}{3}}\right)^{60-k}=C_{60}^kx^{\frac{11k}{3}-40}\)
Số hạng ko chứa x \(\Rightarrow\frac{11k}{3}-40=0\Rightarrow\) ko tồn tại k nguyên thỏa mãn
Vậy trong khai triển ko chứa số hạng ko phụ thuộc x
b/ \(\left(x^{-\frac{2}{3}}+x^{\frac{4}{3}}\right)^{12}\)
SHTQ: \(C_{12}^k\left(x^{-\frac{2}{3}}\right)^k\left(x^{\frac{4}{3}}\right)^{12-k}=C_{12}^kx^{16-2k}\)
Số hạng ko chứa x \(\Rightarrow16-2k=0\Rightarrow k=8\)
Hệ số: \(C_{12}^8\)
c/ \(\left(1+x^{-\frac{1}{2}}-x^3\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_{-\frac{1}{2}}+k_3=16\\-\frac{1}{2}k_{-\frac{1}{2}}+3k_3=0\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_{-\frac{1}{2}};k_3\right)=\left(16;0;0\right);\left(9;6;1\right);\left(2;12;2\right)\)
Hệ số của số hạng ko chứa x:
\(\frac{16!}{16!}+\frac{16!}{9!.6!}.\left(-1\right)+\frac{16!}{2!.12!.2!}=-69159\)