K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

Ta có l 719 + 720 + 721

= 719.(1 + 7 + 72)

= 719.(1 + 7 + 49)

= 719.57 

Mà 719 \(\ne\)0

Nên 719 + 720 + 721 chia hết cho 57

Vậy 719 + 720 + 721 chia cho 57 có số dư là 0

15 tháng 6 2017

Cho hình thang ABCD có góc B= 85. Tính số đo góc ngoài tại đỉnh C

11 tháng 10 2016

Ta có:

\(7^{19}+7^{20}+7^{21}=7^{19}.\left(1+7+7^2\right)=7^{19}.57⋮57\)

\(\Rightarrow7^{19}+7^{20}+7^{21}⋮51\)

Vậy số dư khi chia \(7^{19}+7^{20}+7^{21}\) cho 57 là 0

30 tháng 10 2016

719 + 720 + 721 = 719.(1 + 7 + 72) = 719.57 chia 57 dư 0

24 tháng 12 2016

Ta có: \(7^{19}+7^{20}+7^{21}=7^{19}\left(1+7+7^2\right)=7^{19}.57\)

Do đó số dư của phép chia là 0

1 tháng 10 2020

\(7^{19}+7^{20}+7^{21}=7^{19}.\left(1+7^2+7\right)=7^{19}.57⋮57\)

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

Bổ sung điều kiện $n$ là số tự nhiên khác $0$

Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)

\(4^{3^{4n+1}}\equiv 0\pmod 4\)

\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)

Vậy $A\vdots 4(*)$

Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$ 

$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$

$3^{4n+1}=3.81^n\equiv 3\pmod {10}$

$\Rightarrow 3^{4n+1}=10t+3$

$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$

Do đó:

$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$

Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$

Ta có đpcm.

 

Bạn có thể gõ lại công thức rõ hơn được không?

25 tháng 2 2016

ai giúp mk vs