K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 11 2020

\(A=1+\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(=1+2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{2014}\left(1+2+4\right)\)

\(=1+2.7+2^4.7+...+2^{2014}.7\)

\(=1+7\left(2+2^4+...+2^{2014}\right)\)

\(\Rightarrow A\) chia 7 dư 1

28 tháng 10 2020

600000000<1

28 tháng 10 2020

Cho mình xin cách làm đi

30 tháng 12 2020

a) Ta có:

\(A=1+2+2^2+2^3+...+2^{2015}\)

\(A=\left(1+2+2^2\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)-2^{2016}\)

\(A=7+...+7\cdot2^{2014}-2^{2016}\)

\(A=7\cdot\left(1+...+2^{2014}\right)-2^{2016}\)

Lại có: \(2^4\equiv2\left(mod7\right)\Leftrightarrow\left(2^4\right)^{504}=2^{2016}\equiv2\left(mod7\right)\)

\(\Rightarrow A\equiv-2\left(mod7\right)\)

Vậy A chia 7 dư -2 hoặc 5

b) \(PT\Leftrightarrow x\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow x\in\left\{0;-2-;-1\right\}\)

=> Tổng các nghiệm là: -3

15 tháng 10 2022

 

a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)

\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)

\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)

b: \(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6

b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0

=>m=-5 hoặc m=4/17

6 tháng 5 2020

Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2 

=> đa thức dư có bậc cao nhất là 1 

=> G/s: đa thức dư là: r(x) = a x + b 

Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b 

Vì f ( x ) chia ( x - 2 ) dư 2016 

=> f ( 2 ) = 2016   => a.2 + b = 2016 (1) 

Vì f(x ) chia ( x - 3 ) dư 2017 

=> f ( 3) = 2017 => a.3 + b  = 2017 (2) 

Từ (1) ; (2) => a = 1; b = 2014 

=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014

và đa thức dư là: x + 2014

24 tháng 3 2017

ta có A = 1! + 2! + 3! + ... + 2015!

           = (...0)