\(3^{n+2}-2^{n+2}+3^n-2^n\) (với n là số nguyên dương ) cho 10

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

Ta có:  3n+2−2n+2+3n−2n

=3n.32-2n.22+3n-2n

=3n.(9+1)-2n.(22+1)

=3n.10-2n.5

=3n..10-2n-1.10

=10.(3n-2n-1)    (chia hết cho 10)

25 tháng 2 2016

3n . 32 - 2n . 22 + 3n - 2n

3n(32 + 1) - 2n-1(23 + 2)

(3n - 2n-1).10 chia hết cho 10

9 tháng 2 2018

Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10 

9 tháng 2 2018

Ta có 3n+2-2n+2+3n-2n

= 3n.9-2n.4+3n-2n

= 3n(9+1)-2n(4+1)

= 3n.10-2n.5=3n.10-2n-1.10

Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n

=> 3n+2-2n+2+3n-2chia hết cho 10 với mọi số nguyên dương n

24 tháng 8 2016

3n+2-2n+2+3n-2n

=3n.32-2n.22+3n-2n

=(3n.32+3n)-(2n.22+2n)

=3n.(32+1)-2n.(22+1)

=3n.10-2n.5

=3n.10-2n-1.2.5

=3n.10-2n-1.10

=10.(3n-2n-1) chia hết cho 10

Chúc bạn học giỏi nha!!!

K cho mik vs nhé Nguyễn Thị Kim Nguyên

24 tháng 8 2016

Cảm ơn Hà nha

29 tháng 10 2017

=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)

=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)\(2^n\)

=10 .\(3^n\)-5.\(2^n\)

=10.\(3^n\)-5.2.\(2^{n-1}\)

=10 .(\(3^n\)-\(2^n\) )

=> chia hết cho 10

29 tháng 10 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)

13 tháng 7 2015

- Đề bài có sai không bạn , mình thử rồi mà k đc :))) bạn thử thử bằng n = 1 đi k ra đâu

22 tháng 7 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

Thấy: \(3^{n+2}+3^n=3^n.2^2+3^n=9.3^n+3^n=3^n.\left(9+1\right)=3^n.10\)

\(\Rightarrow3^{n+2}+3^n⋮10\)\(\left(1\right)\)

\(2^{n+2}+2^n=4.2^n+2^n==2^n\left(4+1\right)=2^n.5=2.2^{n-1}.5=10.2^{n-1}\)

\(\Rightarrow2^{n+2}+2^n⋮10\)\(\left(2\right)\)

Từ (1) và (2) \(\Rightarrow3^{n+2}+2^n-\left(2^{n+2}+2^n\right)⋮10\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (đpcm)

k!