Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn dựa vào chuyên đề nâng cao đồng dư của lớp 6 ý. Lên mạng tra cũng có mà
A chia cho 99 không dư vì trong đẳng thức A có hai thừa số là 3 và 33 , ta có 3* 33=99 mà 99chia hết cho 99 nên A chia hết cho 99
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4..98\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).\left[2.\left(4.5.6...32\right)\left(34.35.36...98\right)\right].3.33\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).\left[2.\left(4.5.6...32\right)\left(34.35.36...98\right)\right].99\)chia hết cho 99
A chia 99 dư 0
\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
\(B=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)
\(B=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)
\(B=100\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)\)
Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=\frac{1}{100}\)
Vậy...
P/s: Hoq chắc
#)Giải :
\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
\(B=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)\)
\(B=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)
\(B=100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=100\)
ta có
x+y+y+z+z+x=\(\frac{13}{12}\)
2(x+y+z)=\(\frac{13}{12}\)
=>x+y+z=\(\frac{13}{24}\)
z=(x+y+z)-(x+y)
y=y+z-z
x=x+Y-y
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{2765070}{921690}+\frac{9310}{921690}+\frac{9405}{921690}+\frac{9702}{921690}\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{2793487}{921690}\)
\(BCNN\left(99,98,95\right)=921690\Rightarrow x=101\)
Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\)
\(=\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+\left(\frac{1}{3}+\frac{1}{96}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)
\(=\frac{99}{1.98}+\frac{99}{2.97}+\frac{99}{3.96}+...+\frac{99}{49.50}\)
\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4....98\)
\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right).2.3.4....98\)chia hết cho 99 (đpcm)
Bài 1:
\(\frac{37.13-13}{24+37.12}=\frac{13.\left(37-1\right)}{2.12+37.12}=\frac{13.36}{12.\left(37+2\right)}=\frac{13.36}{12.39}=\frac{1.3}{1.3}=1\)
Bài 2:
\(\frac{101+100+...+2+1}{101-100+99-98+...+3-2+1}=\frac{\left[\left(101-1\right):1+1\right].\left(101+1\right):2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)\(=\frac{101.102:2}{1.\left[\left(101-1\right):2+1\right]}=\frac{5151}{1.51}=\frac{5151}{51}=101\)
\(\frac{3737.43-4343.37}{2+4+...+100}=\frac{37.101.43-43.101.37}{2+4+...+100}=\frac{0}{2+4+6+...+100}=0\)
\(B=\frac{1}{99}+\frac{2}{98}+...+\frac{99}{1}\)
\(B=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)
\(B=99+\frac{98}{2}+...+\frac{1}{99}\)
\(B=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
(số hạng 99 chia thảnh 99 số 1 cộng vào từng phân số còn dư 1 số 1 để ngoài)
\(B=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)
\(B=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Và \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow\frac{B}{A}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}\)
\(\Rightarrow\frac{B}{A}=100\)
b/a = 100. Nếu k đúng cho mình, Mình sẽ trình bày cách làm cho bạn.