Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x;y;z lần lượt là các góc của tam giác ABC:
X/3=Y/4=Z/5 và x+y+z=180
Áp dụng tính chất của dãy tỉ số bằng nhau:
X/3=Y/4=Z/5=X+Y+Z/3+4+5=180/12=15
*X/3=15 SUY RA X=3 X 15 = 45
*Y/4=15 SUY RA Y= 4 X 15=60
*Z/5 =15 SUY RA Z=5 X 15 =75
Vây x=45
y=60
z=75
Gọi số đo các góc lần lượt là a , b , c
Theo đề bài ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5};a+b+c=180\)( Định lý tổng 3 góc của tam giác bạn nhé )
Áp dụng tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)
\(\Rightarrow\)\(a=15.3=45\)
\(b=15.4=60\)
\(c=15.5=75\)
Vậy số đo các góc của tam giác lần lượt là 45 độ ; 60 độ ; 75 độ
Nếu bạn không tin thì có thể lấy ba số : 45 + 60 + 75 = 180 độ ( đúng bạn nhé )
`#3107`
`1,`
`a)` Yc là tính \(\widehat{yOm}\) và \(\widehat{xOn}\) phải k c? Ba điểm x, O, m cùng nằm trên 1 đt' mà?
Vì \(\widehat{xOy}\) và \(\widehat{xOn}\) là 2 góc kề bù
\(\widehat{xOy} + \widehat{xOn} = 180^0 \\ \Rightarrow 50^0 + \widehat{xOn} = 180^0 \\ \Rightarrow \widehat{xOn} = 130^0\)
Vì \(\widehat{xOn}\) và \(\widehat{yOm}\) là 2 góc đối đỉnh
`=>`$ \widehat{xOn} = \widehat{yOm} = 130^0$
Vậy, $ \widehat{xOn} = \widehat{yOm} = 130^0.$
`b)`
Vì Oz là tia phân giác của $\widehat{yOm}$
`=>` $\widehat{mOz} = \widehat{yOz} = \dfrac{1}{2} \widehat{yOm}$
`=>` $\widehat{mOz} = \dfrac{1}{2} . 130^0 = 65^0$
Vậy, $\widehat{mOz} = 65^0.$
Theo bất đẳng thức tam giác, cạnh còn lại sẽ lớn hơn 9-3=6cm và nhỏ hơn 9 + 3=12cm. Vậy chọn B
Gọi cạnh còn lại có độ dài là x, theo bất đẳng thức tam giác ta có:
7-3 < x < 7 + 3 ⇒ 4 < x < 10. Chọn B
Gọi cạnh còn lại có độ dài là x, theo bất đẳng thức tam giác ta có:
10 - 2 < x < 10 + 2 ⇒ 8 < x < 12. Chọn D
Gọi số đo góc ở đỉnh cân là a, góc ở đáy là b
Nhớ công thức tính góc ở đáy của tam giác cân không ?
^ đáy = (1800 - ^ đỉnh cân)/2 (không cho dùng trực tiếp có thể chứng minh , dùng tổng 3 góc chứng minh nhé)
Thay a,b vào công thức trên ta đc :
b=(1800 - a)/2 (1)
Ta có:
b- a = 150 (số đo góc ở đáy lớn hơn góc ở đỉnh là 150)
=> b = 150 + a (2)
Từ (1),(2) => 150 + a = (1800 - a)/2
=>300 +2a = 1800 - a
=> 3a = 1500
=> a = ?0
Gọi 3 góc của tam giác cân đó là a,b,c theo thứ tự a là góc đinh, b và c là 2 góc đáy( trong bài này mk viết kí hiệu thường, còn khi làm bài thì bn nhớ viết chữ cái in hoa)
Theo bài ra ta có b-15=a<=>b=a+15(1)
Mà a+b+c=180(định lý..)
=>a=180-(b+c)
Lại có:b=c( vì là 2 góc đáy của tam giác cân)
=>a=180-2b
Thay (1) vào ta có:
a=180-2.(a+15)
=>180-2a-30=a
=>2a+a=180-30
=>3a=150=>a=50
Vậy số đo góc đinh của tam giác cân trong đề bài=500
Để vẽ các góc có số đo 100 độ, ta cần một cặp song song song và một cặp cạnh chéo nhau. Vì tia OZ được cho là tia đối của tia OX nên ta vẽ một đường thẳng đi qua điểm O và cắt tia OX tạo thành tia OZ. a) Trong hình vẽ trên, tên hai góc kề bù là góc xOY và góc yOZ. b) Để tính số đo góc yOZ, ta cần biết số đo góc xOY và biết rằng các góc kề bù có tổng bằng 180 độ. Vì vậy, đại lượng đo góc yOZ = 180 - đại lượng đo góc xOY. c) Để vẽ đường phân giác OT của góc xOY, ta có thể tìm trung điểm M của đoạn thẳng XY, sau đó vẽ đường thẳng đi qua đỉnh O và trung điểm M. - Để tính số đo góc TOY, ta biết rằng TOY là đường phân giác của góc xOY, nên số đo góc TOY = 0.5 * số đo góc xOY. - Để tính số đo góc TOZ, ta biết rằng TO là đường phân giác của góc xOY, nên số đo góc TOZ = 0.5 * số đo góc xOY. Mong rằng câu trả lời này đã giúp bạn hiểu và thực hiện được yêu cầu vẽ và tính toán
Theo đề bài ta có: \(\frac{A}{1}\); \(\frac{B}{2}\); \(\frac{C}{3}\)và A+B+C=180
\(\frac{A}{1}+\frac{B}{2}+\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\frac{A}{1}=30\Rightarrow A=30\cdot1=30^0\)
\(\Rightarrow\frac{B}{2}=30\Rightarrow B=30\cdot2=60^0\)
\(\Rightarrow\frac{C}{3}=30\Rightarrow C=30\cdot3=90^0\)
Gọi số đo 3 góc của tam giác lần lượt là: x,y,z và x,y,z phải là số dương.
Theo đề bài ta có
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) và x+y+z=180
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{180}{6}=30\)
- \(\frac{x}{1}=30.1=30\)
- \(\frac{x}{2}=30.2=60\)
- \(\frac{x}{3}=30.3=90\)
Vậy số đo các góc của tam giác lần lượt là: 30,60,90.
mk nhé bạn ^...^ ^_^
\(\widehat{DFG}=26^0+34^0=60^0\)
\(\text{Xét }\Delta DFE\text{ có:}\)
\(\widehat{DEF}+\widehat{EDF}+\widehat{DFE}=180^0\text{(tính chất tổng 3 góc 1 tam giác)}\)
\(34^0+26^0+\widehat{DFE}=180^0\)
\(\Rightarrow\widehat{DFE}=180^0-\left(34^0+26^0\right)=120\)
\(\text{Vì }\widehat{DFE}\text{ và }\widehat{DFG}\text{ là 2 góc kề bù}\)
\(\Rightarrow\widehat{DFE}+\widehat{DFG}=180^0\)
\(\Rightarrow\widehat{DFG}=180^0-\widehat{DFE}\)
\(\Rightarrow\widehat{DFG}=180^0-120^0=60^0\)