Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a - 16 chia hết cho cả 17 và 23
Mà 391 = 17 . 23
=> a - 16 cũng chia hết cho 391
Như vậy có nghĩ là a chia 391 dư 16
Số nhỏ nhất chia hết cho 17 và 23 đó là:
17 * 23 = 391
Nếu mỗi số cộng thêm 16 đơn vị thì sẽ chia hết vậy số đó sẽ là:
391 - 16 = 375
Đáp số : 375
Bài 2:
Sửa đề: chia 23 dư 7
Vì a chia 17 dư 1 nên a-16 chia hết cho 17
Vì a chia 23 dư 7 nên a-16 chia hết cho 23
Vậy: a chia 391 dư 16
a - 16 chia hết cho cả 17 và 23
mà 391 = 17.23
=> a - 16 cũng chia hết cho 391
Như vậy có nghĩa là a : 391 dư 16
Gọi a là số cần tìm
Ta có:
2737 = 7 . 17 . 23
Do a chia 7 dư 3
a chia 17 dư 12
a chia 23 dư 7
⇒ a chia 2737 dư 3.12.7 = 252
Gọi số cần tìm là a
Ta có: a:7 dư 3 => a+4 chia hết cho 7 => a+4+39 chia hết cho 7 => a+39 chia hết cho 7 (1)
a:17 dư 12 => a+5 chia hết cho 17 => a+5+34 chia hết cho 17 => a+39 chia hết cho 17 (2)
a:23 dư 7 => a+16 chia hết cho 23 => a+16+23 chia hết cho 23 => a +39 chia hết cho 23 (3)
Từ (1), (2), và (3) => a+39 chia hết cho 7, 17 và 23
Mà UCLN(7; 17; 23)= 1
=> a+39 chia hết cho 7x17x23
=> a:2737 dư 2689
Vậy số đó chia cho 2737 dư 2689
theo đầu bài, ta có:
A=7.a+4
=17.b+3
=23.c+11 (a,b,c ∈∈ N)
nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
A+150=7.a+4+150=7.a+7.22=7.(a+22)
=17.b+3+150=17.b+17.9=17.(b+9)
=23.c+11+150=23.c+23.7=23.(c+7)
như vậy A+150 đồng thời chia hết cho 7,17 và 23. nhưng 7, 17 và 23 là ba sô đôi một nguyên tố cùng nhau, suy ra A+150 chia hết cho 7.17.13=2737
vậy A+150=2737k (k=1;2;3;4...)
suy ra: A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k'+2587
do 2587<2737 nên 2587 là số dư trong phép chia số đã cho A cho 2737
dư 7 bạn nhé