Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Việc xếp 9 viên bi sao cho không có hai viên bi trắng nào xếp liến nhau được thực hiện qua 2 công đoạn
Công đoạn 1: Xếp 4 viên bi xanh trước, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách
Công đoạn 2: Xếp 5 viên bi trắng vào 5 vị trí xung quanh bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5! = 120\) cách
Vậy có \(120.24 = 2880\) kết quả thuận lợi cho biến cố “Không có hai viên bi trắng nào xếp liền nhau”
b) Việc xếp 9 viên bi sao cho bốn viên bi xanh được xếp liền nhau được thực hiện qua 2 công đoạn
Công đoạn 1: Xếp 4 viên bi xanh liền nhau, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách
Công đoạn 2: Xếp 5 viên bi trắng có kích thước khác nhau vào bên trái hay bên phải của bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5!{.2^5} = 3840\) cách
Vậy có \(3840.24 = 92160\) kết quả thuận lợi cho biến cố “Bốn viên bi xanh được xếp liền nhau”
a: Số cách chọn là \(C^6_{16}=8008\left(cách\right)\)
b: Số cách chọn là \(C^2_4\cdot C^4_{12}=2970\left(cách\right)\)
c: SỐ cách chọn là \(C^6_9+C^6_{12}+C^6_{11}=1470\left(cách\right)\)
\(\overline A \) là biến cố: “Trong 4 viên bi chỉ có toàn bi đỏ hoặc bi xanh”.
Ta có \(n\left( \Omega \right) = C_{10}^4 = 210\) và \(n\left( {\overline A } \right) = C\;_4^4 + C\;_6^4 = 16.\)
Do đó \(P\left( {\overline A } \right) = \frac{{16}}{{210}}=\frac{{8}}{{105}} \).
Suy ra \(P\left( A \right) = 1 - \frac{{8}}{{105}} = \frac{{97}}{{105}}\).
Mỗi cách sắp xếp 6 bạn vào 6 chiếc ghế trống là hoán vị của 6 chiếc ghế. Do đó, số cách sắp xếp chỗ ngồi cho các thành viên trong nhóm là
\({P_6} = 6! = 720\) (cách)
Số cách để Hà chọn ra đúng 2 viên bi khác màu là: 5. 7 = 35 (cách)
Do nếu thực hiện 1 thao tác thì số bi trong mỗi chồng vẫn không thay đổi nên chắc chắn trong số các chồng ban đầu phải có đúng 1 chồng chứa 1 viên bi. (Vì nếu chồng nào cũng có từ 2 viên bi trở lên thì sau khi thực hiện thao tác, ta sẽ có thêm 1 cột mới, không thỏa mãn; còn nếu có 2 hay nhiều chồng có 1 viên bi thì sau khi thực hiện thao tác, số chồng sẽ giảm đi.)
Hơn nữa, lập luận tương tự, sau khi thực hiện xong thao tác lần đầu, ở lần thứ hai cũng bắt buộc phải có đúng một chồng có 1 viên bi. Điều này đòi hỏi ban đầu phải có đúng 1 chồng có 2 viên bi.
Cứ tiếp tục như thế, trong số các chồng ban đầu, phải có 1 chồng có 3 viên và 1 chồng có 4 viên bi. Do đó, chỉ có duy nhất 1 trường hợp sau là thỏa mãn ycbt.
Vậy có thể có 4 cọc tất cả.
a: Số cách chọn là:
\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)
b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)
Số cách chọn 9 viên ko có đủ 3 màu là:
\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)
=>Có 4939 cách
Có 2 kiểu xếp thỏa mãn là: Đỏ-Đen-Đỏ-Đen-Đỏ-Đen-Đỏ-Đen hoặc Đen-Đỏ-Đen-Đỏ-Đen-Đỏ-Đen-Đỏ
Ở mỗi kiểu xếp, 4 viên bi đỏ có \(4!\) cách xếp và 4 viên bi đen có \(4!\) cách xếp
Do đó có: \(2.4!.4!=1152\) cách xếp thỏa mãn