K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2023

Có 2 kiểu xếp thỏa mãn là: Đỏ-Đen-Đỏ-Đen-Đỏ-Đen-Đỏ-Đen hoặc Đen-Đỏ-Đen-Đỏ-Đen-Đỏ-Đen-Đỏ

Ở mỗi kiểu xếp, 4 viên bi đỏ có \(4!\) cách xếp và 4 viên bi đen có \(4!\) cách xếp

Do đó có: \(2.4!.4!=1152\) cách xếp thỏa mãn

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Việc xếp 9 viên bi sao cho không có hai viên bi trắng nào xếp liến nhau được thực hiện qua 2 công đoạn

Công đoạn 1: Xếp 4 viên bi xanh trước, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách

Công đoạn 2: Xếp 5 viên bi trắng vào 5 vị trí xung quanh bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5! = 120\) cách

Vậy có \(120.24 = 2880\) kết quả thuận lợi cho biến cố “Không có hai viên bi trắng nào xếp liền nhau”

b) Việc xếp 9 viên bi sao cho bốn viên bi xanh được xếp liền nhau được thực hiện qua 2 công đoạn

Công đoạn 1: Xếp 4 viên bi xanh liền nhau, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách

Công đoạn 2: Xếp 5 viên bi trắng có kích thước khác nhau vào bên trái hay bên phải của bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5!{.2^5} = 3840\) cách

Vậy có \(3840.24 = 92160\) kết quả thuận lợi cho biến cố  “Bốn viên bi xanh được xếp liền nhau” 

a: Số cách chọn là \(C^6_{16}=8008\left(cách\right)\)

b: Số cách chọn là \(C^2_4\cdot C^4_{12}=2970\left(cách\right)\)

c: SỐ cách chọn là \(C^6_9+C^6_{12}+C^6_{11}=1470\left(cách\right)\)

 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

\(\overline A \) là biến cố: “Trong 4 viên bi chỉ có toàn bi đỏ hoặc bi xanh”.

Ta có \(n\left( \Omega  \right) = C_{10}^4 = 210\) và \(n\left( {\overline A } \right) = C\;_4^4 + C\;_6^4 = 16.\)

Do đó \(P\left( {\overline A } \right) = \frac{{16}}{{210}}=\frac{{8}}{{105}} \).

Suy ra \(P\left( A \right) = 1 - \frac{{8}}{{105}} = \frac{{97}}{{105}}\).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Mỗi cách sắp xếp 6 bạn vào 6 chiếc ghế trống là hoán vị của 6 chiếc ghế. Do đó, số cách sắp xếp chỗ ngồi cho các thành viên trong nhóm là

                             \({P_6} = 6! = 720\) (cách)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số cách để Hà chọn ra đúng 2 viên bi khác màu là: 5. 7 = 35 (cách)

25 tháng 12 2016

Viên bi màu trắng

25 tháng 12 2016

bài này lp mí z

 

6 tháng 5 2023

th1: (2 vàng, 1 đỏ, 1 trắng) số cách chọn là 6C2 x 5C1 x 4C1 = 300(cách)

th2:(1 vàng, 2 đỏ, 1 trắng) số cách chọn là 6C1 x 5C2 x 4C1 = 240 (cách)

th3:(1 vàng, 1 đỏ, 2 trắng) số cách chọn là 6C1 x 5C1 x 4C2 = 180 (cách)

-Vậy tổng số cách chọn là 300+240+180=720 cách

     

30 tháng 12 2023

 Do nếu thực hiện 1 thao tác thì số bi trong mỗi chồng vẫn không thay đổi nên chắc chắn trong số các chồng ban đầu phải có đúng 1 chồng chứa 1 viên bi. (Vì nếu chồng nào cũng có từ 2 viên bi trở lên thì sau khi thực hiện thao tác, ta sẽ có thêm 1 cột mới, không thỏa mãn; còn nếu có 2 hay nhiều chồng có 1 viên bi thì sau khi thực hiện thao tác, số chồng sẽ giảm đi.)

 Hơn nữa, lập luận tương tự, sau khi thực hiện xong thao tác lần đầu, ở lần thứ hai cũng bắt buộc phải có đúng một chồng có 1 viên bi. Điều này đòi hỏi ban đầu phải có đúng 1 chồng có 2 viên bi.

 Cứ tiếp tục như thế, trong số các chồng ban đầu, phải có 1 chồng có 3 viên và 1 chồng có 4 viên bi. Do đó, chỉ có duy nhất 1 trường hợp sau là thỏa mãn ycbt. 

Vậy có thể có 4 cọc tất cả.

a: Số cách chọn là:

\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)

b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)

Số cách chọn 9 viên ko có đủ 3 màu là:

\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)

=>Có 4939 cách