Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\) <=> p2 = ( m – 1 )( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n ( 1 )
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 )
Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.
Khi đó m = 2 và tất nhiên 2 + n = p2
Do đó A = p2 - n = 2
a)\(2^{2n-1}+4^{n+2}=264\)
\(264=2^3\cdot3\cdot11\)
\(2^3=2^{\left(3+1\right)\div2}=2^2\Rightarrow n=2\)
\(4^{n+2}=264-2^3=256\)
\(256=4^4=4^{4-2}=4^2\Rightarrow n=2\)
vậy \(n=2\)
b) \(P=\frac{9^{14}\cdot25^6\cdot8^7}{18^{12}\cdot625^3\cdot24^3}\)
\(P=\frac{9^{14}\cdot25^6\cdot8^7}{18^{12}\cdot25^6\cdot25^6\cdot24^3}\)
\(P=\frac{9^{14}\cdot8^7}{18^{12}\cdot24^3}=3\)
Ta có: (n2 + n + 4) chia hết cho (n + 1)
=> (n.n + n.1 + 4) chia hết cho (n + 1)
=> [n(n + 1) + 4] chia hết cho (n + 1)
Vì: n(n + 1) chia hết cho (n + 1)
Mà: [n(n + 1) + 4] chia hết cho (n + 1)
=> 4 chia hết cho (n + 1)
=> (n + 1) \(\in\)Ư(4) = {1;2;4}
=> n\(\in\){0;1;3}
Nhớ k cho mình nhé !!!!
để A là số nguyên tố thì phải đảm bảo A thuộc N
để A thuộc N
=> 2n + 8 chia hết cho n + 1
=> 2.(n + 1) + 6 chia hết cho n+ 1
=> 6 chia hết cho n +1
=> n+ 1 \(\in\) Ư(6 ) = {1;2;3;6}
=> n+1 =1 => n = 0
n+1 = 2 => n = 1 (snt)
n+1 =3 => n = 2 (sgt)
n + 1 = 6 => n = 5 (snt)
=> n = {1;2;5}
\(1^3+2^3+3^3+4^3+5^3\)
\(=1+8+27+64+125\)
\(=225=15^2\)
Vậy a = 15
k nha
\(\Leftrightarrow n+1\in\left\{1;2\right\}\)
hay \(n\in\left\{0;1\right\}\)
Bài 1 :Tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố :
a) p + 2 và p + 10
b) p + 6 ; p + 8 ; p +12 ; p +14
Bài 2 : Tìm số tự nhiên sao cho :
a) n + 3 chia hết cho n - 1 .
b) 4n + 3 chia hết cho 2n + 1 .
2)
a) Ta có:
n+3⋮n−1n+3⋮n−1
⇒(n−1)+4⋮n−1⇒(n−1)+4⋮n−1
⇒4⋮n−1⇒4⋮n−1
⇒n−1∈U(4)={1;2;4}⇒n−1∈U(4)={1;2;4} ( Vì n∈Nn∈N )
⇒⎧⎪⎨⎪⎩n−1=1⇒n=2n−1=2⇒n=3n−1=4⇒n=5⇒{n−1=1⇒n=2n−1=2⇒n=3n−1=4⇒n=5
Vậy n∈