Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)
Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)
+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)
+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)
+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)
Vậy GTNN của \(C=-6\) khi \(x=\pm2\)
2)
Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)
Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)
Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)
Ví dụ một bài toán :
Tìm GTLN của B = 10-4 | x-2|
Vì |x-2| \(\ge0\forall x\)
\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ
1) x : y = 3 => x = 3y
=> x+ y = 3y + y = 4y = \(-\frac{6}{5}\) => y = \(-\frac{6}{5}\) : 4 = \(-\frac{3}{10}\)
=> x = 3.\(-\frac{3}{10}\) = \(-\frac{9}{10}\)
2) => \(\frac{-18}{6}
x^2-25x^4=0
=>x^2-25x^2.x^2=0
=>x^2.(1-25x^2)=0
=>x=0 hoặc x^2=1/25
=>x thuộc {-0,2;0;0,2}
2) 2 giá trị
3)x^2+7x+12=0
=>x^2+3x+4x+3.4=0
=>x(x+3)+4(x+3)=0
=>(x+4)(x+3)=0
=>x=-3;x=-4
nhớ ****
1)x thuộc {-0,2;0;0,2}
2)2 giá trị
3)x^2+3x+4x+4.3=0
=>x(x+3)+4(x+3)=0
=>(x+3)(x+4)=0
=>x=-4;x=-3
1)x2-25x4=0
x2(1-25x2)=0
=>x^2=0 hoặc 1-25x^2=0
x=0 25x^2=-1-0=1
x^2=1/25=(1/5)^2=(1/-5)^2
Vậy S={-1/5;0;1/5}
2)Có 3 giá trị là 0;1;2
3)có 2 giá trị là -3;-4
Lời giải:
$|x-\frac{2}{3}|\leq \frac{20}{3}$
$\Rightarrow \frac{-20}{3}\leq x-\frac{2}{3}\leq \frac{20}{3}$
$\Rightarrow \frac{-20}{3}+\frac{2}{3}\leq x\leq \frac{20}{3}+\frac{2}{3}$
$\Rightarrow -6\leq x\leq \frac{22}{3}< 8$
Mà $x$ nhận giá trị nguyên nên $x\in \left\{-6; -5; -4; -3; -2; -1; 0; 1;2;3;4;5;6;7\right\}$