Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{3}-\dfrac{2}{y}=\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{y}=\dfrac{x}{3}-\dfrac{1}{2}\\\Rightarrow \dfrac{2}{y}=\dfrac{2x-3}{6}\\ \Rightarrow y\left(2x-3\right)=2\cdot6\\ \Rightarrow y\left(2x-3\right)=12\)
mà `y in ZZ;x in ZZ`
`=>y in ZZ;2x-3 in ZZ`
`=>y;2x-3` thuộc ước nguyên của `12`
`=>y;2x-3 in {+-1;+-2;+-3;+-4;+-6;+-12}`
Ta có bảng sau :
`y` | `-1` | `-2` | `-3` | `-4` | `-6` | `-12` | `1` | `2` | `3` | `4` | `6` | `12` |
`2x-3` | `-1` | `-2` | `-3` | `-4` | `-6` | `-12` | `1` | `2` | `3` | `4` | `6` | `12` |
`x` | `1` | `1/2` | `0` | `-1/2` | `-3/2` | `-9/2` | `2` | `5/2` | `3` | `7/2` | `9/2` | `15/2` |
Vì `x;y in ZZ`
nên `(x;y)=(1;-1);(0;-3);(2;1);(3;3)`
Trong các cặp số tự nhiên (x;y) thoả mãn (2x + 1)(y - 3) = 10 thì cặp số cho tích xy lớn nhất là gì?
Vì 10 = 2 * 5 = 1 * 10 nên có các trường hợp sau
- Trường hợp 1: 2x + 1 = 10, y - 3 = 1 (loại, vì 2x + 1 lẻ)
- Trường hợp 2: 2x + 1 = 1, y - 3 = 10 => x = 0, y = 13
- Trường hợp 3: 2x + 1 = 2, y - 3 = 5 (loại)
- Trường hợp 4: 2x + 1 = 5, y - 3 = 2 => x = 2, y = 5
Vậy cặp số cho tích xy lớn nhất là (2,5)
\(\left(2x+1\right)\left(y-3\right)=10<=>2x+1;y-3\inƯ\left(10\right)\)
2x+1 | 1 | 2 | 5 | 10 | -1 | -2 | -5 | -10 |
y-3 | 10 | 5 | 2 | 1 | -10 | -5 | -2 | -1 |
x | 0 | 0,5 | 2 | 4,5 | -1 | -1,5 | -3 | -5,5 |
y | 13 | 8 | 5 | 4 | -7 | -2 | 1 | 2 |
Cặp số (x;y) có tích lớn nhất là:(5;2) có tích bằng 10
\(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)
\(\Leftrightarrow\frac{9+xy}{3x}=\frac{5}{6}\)
\(\Rightarrow54+6xy=15x\)
\(\Leftrightarrow x\left(5-2y\right)=18\)
Vì \(x,y\)là số nguyên nên \(x,5-2y\)là các ước của \(18\), mà \(5-2y\)là số lẻ.
Ta có bảng giá trị:
5-2y | -9 | -3 | -1 | 1 | 3 | 9 |
x | -2 | -6 | -18 | 18 | 6 | 2 |
y | 7 | 4 | 3 | 2 | 1 | -2 |
\(\text{Trong Violympic thì mình chỉ nêu luôn kết quả thôi nhá. Có 4 cặp số (x;y)}\)