Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M=2+22+23+24+....+22017+22018
=> 2M=2(2+22+23+24+....+22017+22018)
=> 2M=22+23+24+25+....+22018+22019
=> 2M-M=22019-2
b) M=2+22+23+24+....+22017+21018
=> M=(2+22)+(23+24)+....+(22017+22018)
=> M=2(1+2)+23(1+2)+....+22017(1+2)
=> M=2.3+23.3+....+22017.3
=> M=3(2+23+.....+22017)
=> M chia hết cho 3
a, M= 2 + 2^2 + 2^3 +....+ 2^2018
2M= 2^2 + 2^3 + 2^4 +...+ 2^2019
2M-M= ( 2^2 + 2^3 + 2^4 +....+ 2^2019) - ( 2+ 2^2 + 2^3 +...+ 2^2018)
M= 2^2019 - 2
b, Tổng trên có 2018 số, nhóm mỗi nhóm 2 số, ta có:
M= (2 + 2^2) + (2^3 + 2^4) +...+ (2^2017 + 2^2018)
M= 2(1+2) + 2^3(1+2) +...+ 2^2017(1+2)
M= 2. 3 + 2^3.3 +...+ 2^2017.3
M= 3( 2 + 2^3 +...+ 2^2017) chia hết cho 3
Vậy M chia hết cho 3
1. Câu hỏi của Nguyễn Huyền Như - Toán lớp 6 - Học toán với OnlineMath
Bài 1 :
Ta có : abc-cba=a.100+b.10+c-c.100-b.10-a=99(a-c)=6b3
=> b=9=> a-c=7
=> a thuộc {8;9}; c thuộc {1;2}
Vậy có 2 số thỏa mãn điều kiện : 891;912
Bài 2 :
Gọi số phải tìm là abc , với a , b , c thuộc N và 1 < hoặc = a < hoặc = 9 , 0 < hoặc = b , c < hoặc = 9.
Theo giả thiết ta có :
abc = k2k2 , k∈Nk∈N
abc = 56l , l∈Nl∈N
⇒⇒ kk2k2 = 56l = 4.14ll
⇒l=14q2⇒l=14q2 , q∈Nq∈N
Mặt khác , ta lại có 100≤561≤999⇒2≤1≤17100≤561≤999⇒2≤1≤17
Từ (1) và (2) , ta có : q = 1 ; ll= 14
Vậy số chính phương phải tìm là 784.
\(17^{2018}=17^{4.504+2}=\left(17^4\right)^{504}.17^2=83521^{504}.289\)
Do chữ số tận cùng của 83521 là 1 => Chữ số tận cùng của 83521504 cũng là 1 => chữ số tận cùng của 83521504 x 289 sẽ là 1 x 9 = 9
hok tốt!
Giả sử khi khai triển thập phân số \(2^{2019}\) có x chữ số và \(5^{2019}\)có y chữ số, ta có x,y nguyên dương và :
\(10^{x-1}< 2^{2019}< 10^x\\ 10^{y-1}< 5^{2019}< 10^y\)
Nhân vế với vế ta được:\(10^{x+y-2}< 10^{2019}< 10^{x+y}\)
Suy ra \(x+y-2< 2019\)
Suy ra x+y<2021
Học tốt
Mình vt mòn bàn phím đó, mong e gái song tử nói lời giữ lời
Làm từng phần thôi dài quá
Bài 1 :
Gọi số tự nhiên đầu tiên tiên là a
=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5
= 6a + 15
mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết
Bài 2 :
Ta thấy : 3^2018 có tận cùng là 1 số lẻ
11^2017 cũng có tận cùng là một số lẻ
=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2
Bài 1:
Tổng của 6 STN liên tiếp coi là:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15⋮̸6\)
KL: Tổng của 6 STN liên tiếp không chia hết cho 6.
Bài 2:
\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )
\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)
KL; đpcm.
Bài 3 :
a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)
KL: ...
b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)
KL: ...