Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bước biến đổi. Bạn tự tìm kết quả nhé!
1) \(\left(\sin x-\cos x\right)\left(\cos^2x+\cos x.\sin x+\sin^2x\right)+\cos^2x-\sin^2x=0\)
<=> \(\left(\sin x-\cos x\right)\left(1+\cos x.\sin x\right)+\left(\cos x-\sin x\right)\left(\cos x+\sin x\right)=0\)
<=> \(\left(\sin x-\cos x\right)\left(\cos x+1\right)\left(\sin x+1\right)=0\)
2) \(\left(\sin^3x-2\sin^5x\right)-\left(2\cos^5x-\cos^3x\right)=0\)
<=> \(\sin^3x\left(1-2\sin^2x\right)-\cos^3x\left(2\cos^2x-1\right)=0\)
<=> \(\sin^3x.\cos2x-\cos^3x.\cos2x=0\)
<=> \(\cos2x\left(\sin^3x-\cos^3x\right)=0\)
3) ĐK: x\(\ne\frac{\pi}{2}+k\pi\)
\(\cos x\left(3.\tan x+2\right)-\left(3\tan x+2\right)=0\)
<=> \(\left(\cos x-1\right)\left(3.\tan x+2\right)=0\)
\(sina+sinb+sinc+3=0\)
\(\Leftrightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)=0\)
Do \(\left\{{}\begin{matrix}sina\ge-1\\sinb\ge-1\\sinc\ge-1\end{matrix}\right.\) ;\(\forall a;b;c\)
\(\Rightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(sina=sinb=sinc=-1\)
\(\Rightarrow cosa=cosb=cosc=0\Rightarrow cosa+cosb+cosc+10=10\)
b/ \(sinx=1-sin^2x\Rightarrow sinx=cos^2x\)
\(\Rightarrow sin^2x=cos^4x\Rightarrow1-cos^2x=cos^4x\)
\(\Rightarrow cos^4x+cos^2x=1\Rightarrow\left(cos^4x+cos^2x\right)^2=1\)
\(\Rightarrow cos^8x+2cos^6x+cos^4x=1\)
Nhân 2 vế với \(sin4x\) sau đó tách:
\(\frac{sin4x}{cosx}+\frac{sin4x}{sin2x}=\frac{2sin2x.cos2x}{cosx}+\frac{2sin2x.cos2x}{sin2x}=\frac{4sinx.cosx.cos2x}{cosx}+\frac{2sin2x.cos2x}{sin2x}\)
Rồi rút gọn
a.
\(1-sin^2x+1-2sin^2x+sinx+2=0\)
\(\Leftrightarrow-3sin^2x+sinx+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{4}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
b. ĐKXĐ; ...
\(5tanx-\frac{2}{tanx}-3=0\)
\(\Leftrightarrow5tan^2x-3tanx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{2}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{2}{5}\right)+k\pi\end{matrix}\right.\)
e.
Ko rõ vế phải
f.
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
a, 3sin2x -5sinx +2=0
<=> sinx =1 hoặc sinx = 2/3
<=> x=π/2 +k2π ; x=arcsin2/3 + k2π hoặc x= π - arcsin2/3 + k2π
b, bn có chép đúng đề bài không.Mình tính ra lẻ
b) phần b giải ntn nhé
\(2\left(cos^2x+sin^2x\right)-sinx-cosx-1=0\Leftrightarrow2.1-sinx-cosx-1=0\Leftrightarrow sinx+cosx=1\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
Ta có:
\(VT=\left(3sinx+4cosx\right)^2\le\left(3^2+4^2\right)\left(sin^2x+cos^2x\right)=25\)
\(VP=25+\left|5sinx-3\right|\ge25\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\frac{sinx}{3}=\frac{cosx}{4}\\5sinx=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sinx=\frac{3}{5}\\cosx=\frac{4}{5}\end{matrix}\right.\) \(\Rightarrow x=...\)