K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

Sai rùi, vì \(-1\le sin\alpha\le1\) nên cũng có \(-1\le sin2\alpha\le1\).

NV
25 tháng 8 2020

\(\frac{1+sin2a}{1-sin2a}=\frac{sin^2a+cos^2a+2sina.cosa}{sin^2a+cos^2a-2sina.cosa}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)^2}\)

\(=\frac{\left(\sqrt{2}cos\left(a-\frac{\pi}{4}\right)\right)^2}{\left(\sqrt{2}sin\left(a-\frac{\pi}{4}\right)\right)^2}=\frac{cos^2\left(a-\frac{\pi}{4}\right)}{sin^2\left(a-\frac{\pi}{4}\right)}=cot^2\left(a-\frac{\pi}{4}\right)\)

21 tháng 10 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

NV
24 tháng 4 2022

Đề bài là: \(sin^2\left(\dfrac{\pi}{8}+a\right)-sin^2\left(\dfrac{\pi}{8}-a\right)-\dfrac{\sqrt{2}}{2}sin2a\) đúng không nhỉ?

\(=\dfrac{1}{2}-\dfrac{1}{2}cos\left(\dfrac{\pi}{4}+2a\right)-\dfrac{1}{2}+\dfrac{1}{2}cos\left(\dfrac{\pi}{4}-2a\right)-\dfrac{\sqrt{2}}{2}sin2a\)

\(=\dfrac{1}{2}\left[cos\left(\dfrac{\pi}{4}-2a\right)-cos\left(\dfrac{\pi}{4}+2a\right)\right]-\dfrac{\sqrt{2}}{2}sin2a\)

\(=sin\left(\dfrac{\pi}{4}\right).sin2a-\dfrac{\sqrt{2}}{2}sin2a=\dfrac{\sqrt{2}}{2}sin2a-\dfrac{\sqrt{2}}{2}sin2a=0\)

23 tháng 7 2023

sin2a cũng giống cos2a có thể có giá trị âm và dương và còn tùy thuộc góc 2a như thế nào?  (Bạn có thể xem phần đường tròn lượng giác sẽ hiểu thêm điều này)

NV
27 tháng 4 2021

\(f'\left(x\right)=\dfrac{1-x}{\sqrt{2x-x^2}}\)

\(f'\left(x\right)\ge1\Leftrightarrow\dfrac{1-x}{\sqrt{2x-x^2}}\ge1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-x^2>0\\1-x>0\\\left(1-x\right)^2\ge2x-x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0< x< 2\\x< 1\\2x^2-4x+1\ge0\end{matrix}\right.\) \(\Rightarrow0< x\le\dfrac{2-\sqrt{2}}{2}\)

27 tháng 4 2021

f'(x)=\(\dfrac{2-2x}{2\sqrt{2x-x^2}}\) = \(\dfrac{1-x}{\sqrt{2x-x^2}}\)

để f'(x) \(\ge\) 1 \(\Leftrightarrow\) \(\dfrac{1-x}{\sqrt{2x-x^2}}\) \(\ge\) 1 \(\Leftrightarrow\) 1-x \(\ge\) \(\sqrt{2x-x^2}\) 

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x-x^2>0\\1-2x+x^2\ge2x-x^2\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}0< x< 2\\\left\{{}\begin{matrix}x< \dfrac{2-\sqrt{2}}{2}\\x>\dfrac{2+\sqrt{2}}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\) 0<x\(\le\) \(\dfrac{2-\sqrt{2}}{2}\)

Ta có:

\(\dfrac{tanA}{tan^3B}=\dfrac{tanA}{tanB}.\dfrac{1}{tan^2B}=\dfrac{\dfrac{sinA}{cosA}}{\dfrac{sinB}{cosB}}.\dfrac{cos^2B}{sin^2B}\)

\(=\dfrac{sinA}{sinB}.\dfrac{cosB}{cosA}.\dfrac{cos^2B}{sin^2B}\)

\(=\dfrac{a}{b}.\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{b^2+c^2-a^2}{2bc}}.\dfrac{\left(\dfrac{a^2+c^2-b^2}{2ac}\right)^2}{1-\left(\dfrac{a^2+c^2-b^2}{2ac}\right)^2}\)

\(=\dfrac{a^2+c^2-b^2}{b^2+c^2-a^2}.\dfrac{\left(a^2+c^2-b^2\right)^2}{\left(2ac\right)^2-\left(a^2+c^2-b^2\right)^2}\)

\(=\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}.\dfrac{1}{\left[\left(a+c\right)^2-b^2\right]\left[b^2-\left(a-c\right)^2\right]}\)

\(=\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}.\dfrac{1}{\left(a+b+c\right)\left(a+c-b\right)\left(b+c-a\right)\left(a+b-c\right)}\)

Biến đổi tương tự, ta có BĐT tương đương với BĐT đã cho:

\(\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}+\dfrac{\left(a^2+b^2-c^2\right)^3}{a^2+c^2-b^2}+\dfrac{\left(b^2+c^2-a^2\right)^3}{a^2+b^2-c^2}\ge\left(a+b+c\right)\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

Ta có BĐT phụ sau:

\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge xy+yz+xz\left(\text{*}\right)\) với \(x,y,z>0\)

Chứng minh:

Áp dụng BĐT cộng mẫu:

\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{\left(xy+yz+xz\right)^2}{xy+yz+xz}=xy+yz+xz\)(đpcm)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)

Áp dụng BĐT \(\left(\text{*}\right)\), với đk \(\Delta ABC\) có ba góc nhọn, ta có:

\(\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}+\dfrac{\left(a^2+b^2-c^2\right)^3}{a^2+c^2-b^2}+\dfrac{\left(b^2+c^2-a^2\right)^3}{a^2+b^2-c^2}\ge\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)+\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)\)

Ta chứng minh được:

\(\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)+\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)=\left(a+b+c\right)\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

\(=-a^4-b^4-c^4+2a^2b^2+2b^2c^2+2a^2c^2\)

Vậy ta có BĐT cần chứng minh, đẳng thức xảy ra khi và chỉ khi \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)