
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{1}{f}=\left(n-1\right)\left(\frac{1}{R_1}+\frac{1}{R_2}\right)\) với R1 = 10 cm ; R2 = -20 cm → f = 40 cm
d' = 24 cm, ảnh thật cách thấu kính 24cm, ngược chiều vật và có độ lớn 1,2cm
b) d′=\(\infty\) : ảnh ở xa vô cùng.
c) d′=−40 < 0 : ảnh ảo ở sau thấu kính, cách thấu kính 40cm

a) Chiều lên phương của sợi dây:
\(T\cos a=P=mg\)
\(T\sin a=F\left(F=kq_1.\frac{q_2}{r^2}\right)\)
Mà hai quả nhiểm điên như nhau.
\(\Rightarrow q_1=q_2=q\Rightarrow F=mg.\tan a\)
a là góc lệch sợi dây phương ngang.
Có: \(\sin a=\frac{r}{\left(2l\right)}\)
Vì a rất nhỏ \(\Rightarrow\sin a=\tan a=\frac{3}{50}\)
Thay vào ra \(F=3,6.10^{-4}\Rightarrow q=1,2.10^{-8}C\)
b) Lúc này: \(F=\frac{k.q^2}{e.r^2}\)
Với e là hằng số điện mới.
\(\Rightarrow F=\frac{mg.q^2}{er^2}=mg.\tan a=mg.\sin a=\frac{mg.r'}{2l'}\)
Thay vào tính được r' = 20 cm

Bài 8:
a, F = 0,18N
b, Để lực tăng 4 lần thì khoảng cách giảm 2 lần -> khoảng cách là 3/2=1,5 cm
c)k/c giữa 2 điện tích là 1,5cm
Bài 9
a)2,67.10^−9 C
b)1,6cm.
Giải thích các bước giải:
Gọi độ lớn hai điện tích là q.
a) Lực tương tác giữa hai điện tích khi chúng cách nhau đoạn r1 là:
F1 = k q2/r1^2 ⇒ 1,6.10^−4 = 9.10^9. q2/0,02^2 ⇒ q=2,67.10^−9 (C)
b) Lực tương tác giữa hai điện tích khi khoảng cách giữa chúng là r2 là:
F2 = k q2/r2^2 ⇒ 2,5.10^−4 = 9.10^9.(2,67.10−9)^2/r2^2 ⇒ r2 = 0,016 (m) = 1,6 (cm)

Q R q
Để chứng minh công thức trên thì ta tính theo định nghĩa: \(V=\dfrac{W_t}{q}\) (điện thế tại 1 điểm bằng thế năng tĩnh điện gây ra tại điện tích đặt ở điểm đó chia cho độ lớn điện tích).
Xét quả cầu có điện tích q đặt cách quả cầu Q một khoảng R.
Thế năng tĩnh điện do Q gây ra tại q là: \(W_t=\dfrac{kQq}{\varepsilon R}\)
Điện thế do Q gây ra tại vị trí q là: \(V=\dfrac{W_t}{q}=\dfrac{kQ}{\varepsilon R}\)

Hình bạn tự vẽ nhé
Ta có \(F3=F13+F23\)
=> \(\left(F3\right)^2=\left(F13\right)^2+\left(F23\right)^2+2.F13.F23.cos\left(F13;F23\right)\)
=>F23=F13=\(\dfrac{9.10^9.\left|-6.10^{-6}.-3.10^{-8}\right|}{\left(0,15\right)^2}=0,072N\)
Mặt khác ta có (F13;F23)= góc ACB
Ta có cos góc ACB =2(cos\(ACH\))2-1=2.\(\left(\dfrac{10\sqrt{2}}{15}\right)^2-1=\dfrac{7}{9}\)=> cos (F13;F23)=\(\dfrac{7}{9}\) ( ACH ; ACB là góc nhé)
=> F32=(0,072)2+(0,072)2+2.(0,072)2.\(\dfrac{7}{9}=\)0,018432N=>F3\(\sim\)0,1357N
Vậy chọn C
=1/2