Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(\frac{-9}{2}\right)\right]-\frac{5}{6}\)
\(S=\frac{3}{4}-\frac{1}{4}-\left[\frac{14}{6}+\left(\frac{-27}{6}\right)\right]-\frac{5}{6}\)
\(S=\frac{1}{2}-\left(\frac{-13}{6}\right)-\frac{5}{6}\)
\(S=\frac{3}{6}-\left(\frac{-13}{6}\right)-\frac{5}{6}\)
\(S=\frac{11}{6}\)
Câu 1:
a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)
\(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)
\(=\frac{1}{2}-\frac{4}{3}\)
\(=-\frac{5}{6}\)
b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=7+\frac{1}{12}+3-\frac{1}{12}-5\)
\(=5\)
Câu 2:
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)
\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
Vậy -1\(\le\)x<7
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3} = {\left( {\frac{8}{9}} \right)^3}.\frac{8}{9} = {\left( {\frac{8}{9}} \right)^{3+1}}={\left( {\frac{8}{9}} \right)^4}\)
b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25 = {\left( {0,25} \right)^7}.0,25 ={\left( {0,25} \right)^{7+1}}= {\left( {0,25} \right)^8}\)
c) \({( - 0,125)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^{6-1}}= {\left( {\frac{{ - 1}}{8}} \right)^5}\)
d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2} = {\left( {\frac{{ - 3}}{2}} \right)^{3.2}} = {\left( {\frac{{ - 3}}{2}} \right)^6}\)
\(2014:\left(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1\frac{2}{5}-\frac{7}{9}+\frac{7}{11}}\cdot\frac{1\frac{1}{6}+0,875-0,7}{\frac{1}{3}+0,25-\frac{1}{5}}\right)\)
\(=2014:\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}\cdot\frac{\frac{7}{6}+\frac{7}{8}-\frac{7}{10}}{\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}\right)\)
\(=2014:\left(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}\cdot\frac{\frac{7}{6}+\frac{7}{8}-\frac{7}{10}}{\frac{2}{6}+\frac{2}{8}-\frac{2}{10}}\right)\)
\(=2014:\left(\frac{2}{7}\cdot\frac{7\left(\frac{1}{6}+\frac{1}{8}-\frac{1}{10}\right)}{2\left(\frac{1}{6}+\frac{1}{8}-\frac{1}{10}\right)}\right)\)
\(=2014:\left(\frac{2}{7}\cdot\frac{7}{2}\right)=2014\)
a, \(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}\)
\(=\left(\frac{1}{4}+\frac{5}{12}\right)-\left(\frac{1}{13}+\frac{7}{8}\right)\)
\(=\frac{2}{3}-\frac{99}{104}\)
\(=-\frac{89}{312}\)
b, \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)
\(=\left(11\frac{3}{13}+5\frac{3}{13}\right)-2\frac{4}{7}\)
\(=\frac{214}{13}-\frac{18}{7}\)
\(=\frac{1264}{91}\)
c, \(\left(6\frac{4}{9}+3\frac{7}{11}\right)-4\frac{4}{9}\)
\(=6\frac{4}{9}+3\frac{7}{11}-4\frac{4}{9}\)
\(=\left(6\frac{4}{9}-4\frac{4}{9}\right)+3\frac{7}{11}\)
\(=2+3\frac{7}{11}\)
\(=5\frac{7}{11}\)
\(=\frac{62}{11}\)
d, \(\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-0,25-\frac{1}{12}\right)\)
\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\cdot0\)
\(=0\)
e, \(-1,5\cdot\left(1+\frac{2}{3}\right)\)
\(=-\frac{3}{2}\cdot\frac{5}{3}\)
\(=-\frac{5}{2}\)
f, Đặt \(A=1^2+2^2+3^2+...+100^2\)
\(=1+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)
\(=1+2\cdot3-2+3\cdot4-3+...+100\cdot101-100\)
\(=\left(2\cdot3+3\cdot4+...+100\cdot101\right)-\left(1+2+3+...+100\right)\)
Đặt B = 2 . 3 + 3 . 4 + ... + 100 . 101
3B = 2 . 3 ( 4 - 1 ) + 3 . 4 ( 5 - 2 ) + ... + 100 . 101 . ( 102 - 99 )
3B = 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 100 . 101 . 102 - 99 . 100 . 101
3B = 100 . 101 . 102
B = \(\frac{100\cdot101\cdot102}{3}\)
B = 343400
Thay B vào A. Ta được :
\(A=343400-\left(1+2+3+...+100\right)\)
Thay C = 1 + 2 + 3 + ... + 100
Dãy số 1; 2; 3; ...; 100 có số số hạng là:
( 100 - 1 ) : 1 + 1 = 100 ( số hạng )
Tổng của dãy số đó là :
( 100 + 1 ) . 100 : 2 = 5050
=> C = 5050
Thay C vào A. Ta được :
\(A=343400-5050\)
\(A=338350\)
Vậy A = 338350
\(M=\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
\(M=\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
\(M=\frac{2}{7}-\frac{1}{\frac{7}{2}}=\frac{2}{7}-\frac{2}{7}=0\)
\(S=\frac{3}{4}-0,25\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)
\(\Rightarrow S=\frac{3}{4}-0,25.\frac{13}{6}-\frac{5}{6}\)
\(\Rightarrow S=\frac{3}{4}-\frac{1}{4}.\frac{13}{6}-\frac{5}{6}\)
\(\Rightarrow S=\frac{18}{24}-\frac{13}{24}-\frac{20}{24}\)
\(\Rightarrow S=\frac{18-13-20}{24}=\frac{-15}{24}\)