\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Ta có :

\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+..............+\dfrac{1}{98.99.100}\)

\(S=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+................+\dfrac{2}{98.99.100}\right)\)

\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...........+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

\(S=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(S=\dfrac{1}{2}.\dfrac{4949}{9900}\)

\(S=\dfrac{4949}{19800}\)

~ Chúc bn học tốt ~

17 tháng 4 2017

Cảm ơn bạn, đúng y chang kết quả của mình luôn

21 tháng 3 2017

E=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

* Áp dụng công thức: \(\dfrac{k}{n.\left(n+k\right)}\)=\(\dfrac{1}{n}-\dfrac{1}{n+k}\)

ta có : \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-....+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)

E=\(\dfrac{1}{1.2}-\dfrac{1}{99.100}\)

E= ........(tính ra)

21 tháng 3 2017

E=4949/9900

12 tháng 5 2017

* Chứng tỏ

Ta có :\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)

= \(\dfrac{1}{1.2.3}.\dfrac{2}{2}+\dfrac{1}{2.3.4}.\dfrac{2}{2}+...+\dfrac{1}{98.99.100}.\dfrac{2}{2}\)

= \(\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}+0+0+...+0+\dfrac{-1}{99.100}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{-1}{9900}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{4850}{9900}+\dfrac{-1}{9900}\right)\)

= \(\dfrac{1}{2}.\dfrac{4849}{9900}\)

= \(\dfrac{4849}{19800}\)

12 tháng 5 2017

* So sánh

\(\dfrac{4950}{19800}\)\(\dfrac{1}{4}\)

\(\dfrac{1}{4}=\dfrac{4950}{19800}\)

\(\dfrac{4950}{19800}=\dfrac{4950}{19800}\)

=> Tổng trên bằng với\(\dfrac{1}{4}\)

1 tháng 6 2017

S = \(\dfrac{1}{1.4}\)+ \(\dfrac{1}{4.7}\)+...+\(\dfrac{1}{2002.2005}\)

S = ( 1 - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-...+\(\dfrac{1}{2002}\)-\(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = ( 1 - \(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = \(\dfrac{2004}{2005}\). \(\dfrac{1}{3}\)

S = \(\dfrac{2014}{6015}\)

1 tháng 6 2017

a) \(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{2002.2005}\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2002}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}.\dfrac{2004}{2005}=\dfrac{668}{2005}\)

KL.

b) \(P=\dfrac{3}{1.6}+\dfrac{3}{6.11}+\dfrac{3}{11.16}+...+\dfrac{3}{96.101}\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}.\dfrac{100}{101}=\dfrac{60}{101}\)

KL.

c) \(Q=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(=\dfrac{1}{2}.\dfrac{1}{19800}=\dfrac{1}{39600}\)

KL.

4 tháng 3 2017

a) Ta có: \(3xy+x-3y=6\)

\(\Rightarrow x\left(3y+1\right)-3y=6\)

\(\Rightarrow x\left(3y+1\right)-\left(3y+1\right)=5\)

\(\Rightarrow\left(x-1\right)\left(3y+1\right)=5\)

Ta có bảng sau:

....

b) Ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}=\frac{4949}{19800}\left(đpcm\right)\)

Vậy...

4 tháng 3 2017

tiếp phần a) là gì

QT
Quoc Tran Anh Le
Giáo viên
3 tháng 12 2017

\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\)

\(S=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)

\(S=\dfrac{1}{1.2}-\dfrac{1}{9.10}\)

\(S=\dfrac{1}{2}-\dfrac{1}{90}=\dfrac{44}{90}\)

8 tháng 5 2017

\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{2009.2010.2011}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{2009.2010}-\dfrac{1}{2010.2011}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2010.2011}\)

\(=\dfrac{1}{2}-\dfrac{1}{4042110}< \dfrac{1}{2}\)

\(\Rightarrow\) \(S< P\)

Vậy \(S< P\)

8 tháng 5 2017

Cảm ơn nhá haha

28 tháng 4 2017

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{2014.2015.2016}\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2015.2016}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2015.2016}\right)\)

\(A=\dfrac{1}{4}-\dfrac{1}{2.2015.2016}< \dfrac{1}{4}\)

\(=>A< \dfrac{1}{4}\)

Chúc bn học tốt

28 tháng 4 2017

Cảm ơn bn nhiều

1 tháng 9 2017

A= \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{4.5.6}+....+\dfrac{1}{37.38.39}\)

A=\(\dfrac{1}{1}-\dfrac{1}{39}\)

A=\(\dfrac{38}{39}\)

còn lại tự làm do mình có việc chút

31 tháng 8 2017

Chưa học

24 tháng 3 2017

\(A=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}\)

\(A=\left(\dfrac{-9-2-7}{18}\right)+\left(\dfrac{21+4+10}{35}\right)+\dfrac{1}{127}\)

\(A=-1+1+\dfrac{1}{127}\)

\(A=\dfrac{1}{127}\)

\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)

\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.4}+\dfrac{1}{3.4.5.4}+...+\dfrac{1}{98.99.100.4}\)

\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.\left(5-1\right)}+\dfrac{1}{3.4.5.\left(6-2\right)}+...+\dfrac{1}{98.99.100.\left(101-97\right)}\)

\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5-1.2.3.4}+\dfrac{1}{3.4.5.6-2.3.4.5}+...+\dfrac{1}{98.99.100.101-97.98.99.100}\)

\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}-\dfrac{1}{1.2.3.4}+\dfrac{1}{3.4.5.6}-\dfrac{1}{2.3.4.5}+...+\dfrac{1}{98.99.100.101}-\dfrac{1}{97.98.99.100}\)

\(\dfrac{1}{4}B=\dfrac{1}{98.99.100.101}\)

\(B=\dfrac{1}{98.99.100.101}.4=\dfrac{1}{98.99.25.101}\)

tick cho mk nha

bài tự làm 100%

co gì chưa đc thì coi lại nha