Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
+ Khi ta đổi chỗ 2 giá trị đứng đầu tiên và cuối cùng cho nhau thì tần số của mỗi giá trị không đổi nên giá trị có tần số lớn nhất không đổi. Do đó; mốt không đổi.
+ Sau khi sắp xếp lại các số liệu (cụ thể là đổ chỗ số đầu tiên và cuối cùng cho nhau) thì ta vẫn được dãy số liệu như ban đầu nên số trung vị không đổi.
+ Tương tự; phương sai không đổi.
Chọn C.
Vì số học sinh là số chẵn nên số trung vị của 100 số liệu này là hay 50 và 51.
Vậy số trung vị của 100 số liệu là chiều cao trung bình của học sinh thứ 50 và 51.
a:
TH1: Trong 4 số có số 0
=>Số cách là: \(C^3_9\cdot3\cdot3\cdot2\cdot1=1512\left(cách\right)\)
TH2: ko có số 0
=>Số cách là: \(A^4_9=3024\left(cách\right)\)
=>Có 1512+3024=4536 cách
b: TH1: Có số 0
=>Có \(C^3_7\cdot5\cdot5\cdot4\cdot3\cdot2\cdot1=21000\left(cách\right)\)
TH2: ko có số 0
=>Có \(C^4_7\cdot6!=25200\left(cách\right)\)
=>Có 46200 cách
Chọn A.
Do 99 là số lẻ nên số trung vị của dãy số liệu trên là số đứng ở vị trí chính giữa ; tức là giá trị đứng ở vị trí thứ 50.
Mẫu số liệu trên được xếp có 11 số liệu nên \({M_e} = 6\).
a) Trong mẫu số liệu (1), hiệu giữa số đo lớn nhất và số đo nhỏ nhất là
\(R = {x_{\max }} - {x_{\min }} = 16 - 14 = 2\)
b) +) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần, ta được:
2 5 6 7 8 9 10 11 12 14 16
+) Vậy \({Q_1}{\rm{ }} = 6;{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}9;{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}12\) . Suy ra \({Q_3} - {Q_1}{\rm{ = }}12{\rm{ }} - 6 = 6\)
a) \(y = 2x(x - 3) = 2{x^2} - 6\)
Hàm số có lũy thừa bậc cao nhất của x là bậc hai
b) \(y = x({x^2} + 2) - 5 = {x^3} + 2x - 5\)
Hàm số có lũy thừa bậc cao nhất của x là bậc ba
c) \(y = - 5(x + 1)(x - 4) = - 5{x^2} + 15x + 20\)
Hàm số có lũy thừa bậc cao nhất của x là bậc hai
Đặt a = 6 + 13 , b = 19 v à c = 3 + 16 thì a, b, c đều dương.
Vì a 2 = 19 + 2 78 , b 2 = 19 , c 2 = 19 + 2 48 nên b 2 < c 2 < a 2 , do đó b < c < a . Đáp án là A.
Ta có: \(cot25^0=tan65^0< tan73^0\)
\(cot38^0=tan52^0< tan62^0\)
\(\Rightarrow cot38^0< tan62^0< cot25^0< tan73^0\)
* Lưu ý: \(cot\alpha=tan\left(90^0-\alpha\right)\)
bé lm xong mất gòi, nhma vẫn cammon iem nhìu nha :))