Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết các phân số dưới dạng tối giản:
- So sánh các số hữu tỉ dương với nhau:
Ta có :
Vì 39 < 40 và 130 > 0 nên
- Tương tự So sánh các số hữu tỉ âm với nhau
Vậy:
a: \(-3< -2.15< -\sqrt{3}< 0< \dfrac{13}{7}< \sqrt{8}< \dfrac{33}{12}\)
b: \(0< \sqrt{3}< \dfrac{13}{7}< 2.15< \dfrac{33}{12}< \sqrt{8}< 3\)
a)-3<-2<-\(\sqrt[]{3}\)<0<\(\dfrac{13}{7}\)<\(\dfrac{33}{12}\)<\(\sqrt{8}\)<15
b)|0|<|-\(\sqrt{3}\)|\(\dfrac{13}{7}\)|<|-2|<|\(\dfrac{33}{12}\)|<\(\sqrt{8}\)<|-3|<15
a) Ta có:\(\frac{19}{33}\) =\(\frac{38}{66}\); \(\frac{16}{11}\)=\(\frac{96}{66}\); \(\frac{13}{22}\)=\(\frac{39}{66}\)
\(\frac{38}{66}\)<\(\frac{39}{66}\)<\(\frac{96}{66}\)hay \(\frac{19}{33}\)<\(\frac{13}{22}\)<\(\frac{16}{11}\)
Vậy các số hữu tỉ sắp xếp theo thứ tự tăng dần là :\(\frac{19}{33}\);\(\frac{13}{22}\);\(\frac{16}{11}\).
b)Ta có: \(\frac{-18}{12}\)=\(\frac{-630}{420}\); \(\frac{-10}{7}\)=\(\frac{-600}{420}\);\(\frac{-8}{5}\)=\(\frac{-672}{420}\)
\(\frac{-672}{420}\)<\(\frac{-630}{420}\)<\(\frac{-600}{420}\)hay \(\frac{-8}{5}\)<\(\frac{-18}{12}\)<\(\frac{-10}{7}\)
Vậy các số hữu tỉ sắp xếp theo thứ tự tăng dần là: \(\frac{-8}{5}\);\(\frac{-18}{12}\);\(\frac{-10}{7}\).
Lời giải:
Viết các phân số dưới dạng tối giản:
- So sánh các số hữu tỉ dương với nhau:
Ta có :
Vì 39 < 40 và 130 > 0 nên
- Tương tự So sánh các số hữu tỉ âm với nhau
Vậy:
Bài 22 Sắp xếp các số hữu tỉ sau theo thứ tự lớn dần:
Lời giải:
Viết các phân số dưới dạng tối giản:
- So sánh các số hữu tỉ dương với nhau:
Ta có :
Vì 39 < 40 và 130 > 0 nên
- Tương tự So sánh các số hữu tỉ âm với nhau
Vậy:
Ta có :
\(\frac{-18}{12}=\frac{-3}{2}=-1,5\);
\(\frac{-10}{7}=-1,4285...\)
\(\frac{-8}{5}=-1,6\)
Ta thấy : -1,4285... > -1,5 > -1,6
=> \(\frac{-10}{7}>\frac{-18}{12}>\frac{-8}{5}\)
Viết các phân số dưới dạng tối giản:
- So sánh các số hữu tỉ dương với nhau:
Ta có :
Vì 39 < 40 và 130 > 0 nên
- Tương tự So sánh các số hữu tỉ âm với nhau
Vậy: