Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) P(x) = – x6 – x4 – 4x3 + 3x2+ 5
Q(x) = 2x5 – x4 – x3 + x – 1
b) P(x) + Q(x) = – x6 + 2x5– 2x4 – 5x3 + 3x2+ x + 4
P(x) – Q(x) = – x6 – 2x5 – 3x3 + 3x2– x + 6
a: \(\Leftrightarrow x^2+x+4x+4+m-4⋮x+1\)
=>m-4=0
hay m=4
b: \(\Leftrightarrow2x^2+4x-x-2+m+2⋮x+2\)
=>m+2=0
hay m=-2
c: \(\Leftrightarrow x^4-x^3+5x^2+x^2-x+5+m-5⋮x^2-x+5\)
=>m-5=0
hay m=5
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
a)(2x2+1)(3x3-2x2+3
= 6x5-4x4+6x2+3x3-2x2+3
= 6x5-4x4+3x3+4x2+3
b)(-3x+1)(4x4-x³+x)
= -12x5+3x4-3x2+4x4-x³+x
= -12x5+7x4-x3-3x2+x
Sắp xếp:
a.(x3-3x2-11x+5):(x-5)
b.(4x4-5x2-3x2+9x-3):(x2-3)
a/ Sx: (x3-3x2-11x+5):(x-5)
=x2+2x-1
Dư -10
b/Sx: (4x4-3x3-5x2+9x-3):(x2-3)
=4x2-3x+7
Dư 3x +18
(mik tính ra nháp r nhé)
\(ĐKXĐ:x\ne\pm\frac{3}{2};x\ne1;x\ne0\)
\(A=\left(\frac{2+3x}{2-3x}-\frac{36x^2}{9x^2-4}-\frac{2-3x}{2+3x}\right):\frac{x^2-x}{2x^2-3x^3}\)
\(=\left[\frac{\left(2+3x\right)^2}{\left(2+3x\right)\left(2-3x\right)}+\frac{36x^2}{\left(2-3x\right)\left(2+3x\right)}-\frac{\left(2-3x\right)^2}{\left(2-3x\right)\left(2+3x\right)}\right]:\frac{x\left(x-1\right)}{x^2\left(2-3x\right)}\)
\(=\frac{4+12x+9x^2+36x^2-4+12x-9x^2}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{36x^2+24x}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{12x\left(3x+2\right)}{2+3x}\cdot\frac{x}{x-1}\)
\(=\frac{12x^2}{x-1}\)
Để A nguyên dương hay \(\frac{12x^2}{x-1}\) nguyên dương
Mà \(12x^2\ge0\Rightarrow x-1>0\Rightarrow x>1\)
Vậy để A nguyên dương thì x là số nguyên dương lớn hơn 1.
\(3x^5-x^2+2x^3-6x^4+2=3x^5-6x^4+2x^3-x^2+2 \)
Có : \(\frac{3x^5-6x^4+2x^3-x^2+2}{3x^2+2}=\frac{x^3.\left(3x^2+2\right)-6x^4-x^2+2}{3x^2+2}=\frac{...-3x^2.2x^2-4x^2+3x^2+2}{3x^2+2}\)
\(=\frac{...-2x^2.\left(3x^2+2\right)+\left(3x^2+2\right)}{3x^2+2}=\frac{\left(x^3-2x^2+1\right).\left(3x^2+2\right)}{3x^2+2}=x^3-2x^2+1\)