Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.71\)
\(72^{44}-72^{43}=72^{43}.\left(72-1\right)=72^{43}.71\)
Vì \(72^{44}>72^{41}\Rightarrow72^{44}.71>72^{43}.71\Rightarrow72^{45}-72^{44}>72^{44}-72^{43}\)
Theo đề bài ta có:
7245 - 7244 = 7244 x ( 72 - 1 ) = 7244 x 71
7244 - 7243 = 7243 x ( 72 - 1 ) = 7243 x 71
Mà 7244 > 7243 ; 71 = 71
=> 7245 - 7244 > 7244 - 7243
a) Ta có:
16^19=(24)19=276 ; 825=(23)25=275
Vì 76>75 nên 276>275. Vậy 1619>825
b) Ta có:
7245-7244=72(7244-7243)
Vậy 7245-7244 > 7244-7243
c) chịu
a, Ta có:16^19=(2^4)^19=2^76
8^25=(2^3)^25=2^75
Vì 2^75<2^76 nên 8^75<16^19
b,Ta có:72^45-72^74=72(72^44-72^73)
=>72^45-72^44>72^44-72^43
c,MÌNH GIẢI PHẦN NÀY SAU NHÉ!
a/ \(27^{11}=\left(3^3\right)^{11}=3^{33}\); \(81^8=\left(3^4\right)^8=3^{32}< 3^{33}\Rightarrow81^8< 27^{11}\)
b/ \(3^{2n}=\left(3^2\right)^n=9^n\); \(2^{3n}=\left(2^3\right)^n=8^n< 9^n\Rightarrow2^{3n}< 3^{2n}\)
a. 2711= (33)11 = 333
818 = (34)8 = 332
Suy ra 333>332 hay 2711>818
b. 32n = (32)n = 9n
23n = (23)n = 8n
Mà 9>8 suy ra 9n>8n hay 32n>23n
c. 523 = 522 . 5
(6.5)22 = 622 . 522
Vì 622>5 suy ra 522 . 5<622 . 522 hay 523<(6.5)22
d. 7245-7244 = 7244(72-1) = 7244 . 71
7244-7243 = 7243(72-1) = 7243 . 71
Vì 7244>7243 suy ra 7244 . 71>7243 . 71 hay 7245-7244>7244-7243
So sánh : và \(72^{44}-72^{43}\)
Ta có :
\(72^{45}-72^{44}=72^{44}\left(72-1\right)\)
\(72^{44}-72^{43}=72^{43}\left(72-1\right)\)
Vì 7244 > 7243 => 7244 (72-1) > 7243 (72-1)
hay 7245 -7244 > 7244 - 7243
\(72^{45}-72^{44}=72^{44}\times\left(72-1\right)=72^{44}\times71\)
\(72^{44}-72^{43}=72^{43}\times\left(72-1\right)=72^{43}\times71\)
Vì \(44>43\Rightarrow72^{44}>72^{43}\Rightarrow72^{44}\times71>72^{43}\times71\)
\(\Rightarrow72^{45}-72^{44}>72^{44}-71^{43}\)
1) Ta có : 7245 - 7243 = 7243.(722 - 1)
7244 - 742 = 742.(722 - 1)
Vì 7243 > 7242
=> 7243.(722 - 1) > 742.(722 - 1)
=> 7245 - 7243 > 7244 - 742
2) Giải
\(M=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{50}}\)
\(4M=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{49}}\)
Lấy 4M trừ M theo vế ta có :
\(4M-M=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{49}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{50}}\right)\)
\(3M=1-\frac{1}{49}\)
\(M=\left(1-\frac{1}{49}\right):3\)
\(=\frac{1}{3}-\frac{1}{147}< \frac{1}{3}\)
Vậy \(M< \frac{1}{3}\left(\text{đpcm}\right)\)
Ta có:
7245 - 7244 = 7244.(72 - 1) = 7244.71
7244 - 7243 = 7243.(72 - 1) = 7243.71
Vì 7244.71 > 7243.71
=> 7245 - 7244 > 7244 - 7243
Ta có:
\(72^{45}-72^{44}=72^{44}\left(72-1\right)=72^{44}.71\)
\(72^{44}-72^{43}=72^{43}\left(72-1\right)=72^{43}.71\)
Vì \(72^{44}.71>72^{43}.71\) nên \(72^{45}-72^{44}>72^{44}-72^{43}\)