Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(A\cap\varnothing=\varnothing\) nên C sai
4.
Tập A có 3 phần tử nên có \(2^3=8\) tập con
Đặt y = f(x) = - 2x2 có đồ thị (C)
và y = g(x) = - 2x2 - 6x + 3 có đồ thị (C')
Ta có :
g(x) = - 2x2 - 6x + 3
= - 2\(\left(x^2+3x-\dfrac{3}{2}\right)\)
= - 2\(\left(x+\dfrac{3}{2}\right)^2\) + \(\dfrac{15}{2}\)
= \(f\left(x+\dfrac{3}{2}\right)+\dfrac{15}{2}\)
Vậy tịnh tiến (C) sang trái \(\dfrac{3}{2}\) đơn vị rồi kéo (C) lên trên \(\dfrac{15}{4}\) đơn vị ta được (C')
\(A=4\sqrt{2}sinx+1-2sin^2x+2=-2sin^2x+4\sqrt{2}sinx+3\)
Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)
\(A=f\left(t\right)=-2t^2+4\sqrt{2}t+3\)
Xét hàm \(f\left(t\right)\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=-\sqrt{2}\notin\left[-1;1\right]\)
\(f\left(-1\right)=1-4\sqrt{2}\) ; \(f\left(1\right)=1+4\sqrt{2}\)
\(\Rightarrow A_{max}=f\left(1\right)=1+4\sqrt{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=2\end{matrix}\right.\)
Ủa đề bài sai, \(c>a\) chứ sao \(c\le a\) được?
//Em xem lại câu hỏi hồi nãy nhé, lúc nhấn gửi đáp án mới làm được 1 nửa nên chưa đúng đâu
Phương trình sao chỉ có 1 vế thế này bạn?
Chắc đề là \(m^2\left(x+2\right)-6=0\)
\(\Leftrightarrow m^2x+2m^2-6=0\)
Phương trình vô nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2=0\\2m^2-6\ne0\end{matrix}\right.\) \(\Rightarrow m=0\)
\(A=180^0-\left(B+C\right)=63^0\)
Áp dụng định lý hàm sin:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
\(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{a.sinB}{sinA}=\dfrac{8.sin47^0}{sin63^0}\approx6,57\left(cm\right)\\c=\dfrac{a.sinC}{sinA}\approx8,44\left(cm\right)\end{matrix}\right.\)
Câu 11:
b: -x^2+x-m<=0 với mọi x
Δ=1^2-4*(-1)*(-m)=1-4m
Để BPT luôn đúng thì 1-4m<=0 và -1<0
=>4m>=1
=>m>=1/4
c: mx^2+mx-1>=0
TH1: m=0
=>-1>=0(vô lý)
=>Nhận)
TH2: m<>0
Δ=m^2-4*m*(-1)=m^2+4m
Để BPT vô nghiệm thì m^2+4m<=0 và m<0
=>-4<=m<=0 và m<0
=>-4<=m<0
Cái này bạn quy đồng lên thôi
\(\dfrac{pi}{3}+\dfrac{kpi}{3}=\dfrac{2pi}{6}+\dfrac{k2pi}{6}=\dfrac{k2pi+2pi}{6}=\dfrac{\left(k+1\right)\cdot2pi}{6}\)
Do là k2pi và (k+1)2pi là hai điểm trùng nhau nên được tính chung luôn là k2pi bạn nha