
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


S1 = 1+2+3+...+999
Số số hạng là: ( 999 - 1 ) : 1 + 1 = 999
Tổng là: ( 999 + 1 ) . 999 : 2 = 499500
S2 = 10+12+14+...+2018
Số số hạng là: ( 2018 - 10 ) : 2 + 1 = 1005
Tổng là: ( 2018 + 10 ) . 1005 : 2 = 1019070

S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
tick đúng mình nha rùi mình giải tiếp dài quá

a) S=(1-2)^2+(3-4)^3+......+(99-100)^99
=(-1)^2+(-1)^3+......+(-1)^99
=1+(-1)+....+(-1)
=[1+(-1)]+[1+(-1)]+.......+[1+(-1)]
=0+0+.....+0=0
1^2-2^2+3^2-4^2+.......+99^2-100^2
=(1+2)(-1)+(3+4)(-1)+......+(99+100)(-1)
=(-1)(1+2+3+4+......+99+100)=(-1).101.100:2=-5050

\(M=1+2+2^2+...+2^{100}\\ \Rightarrow2.M=2+2^2+2^3+...+2^{101}\\ \Rightarrow2.M-M=M=2^{101}-1\)
\(N=1+3^2+3^4+....+3^{100}\\ \Rightarrow3^2.N=3^2+3^4+3^6+....+3^{102}\\ \Rightarrow9.N-N=3^{102}-1\\ \Rightarrow N=\dfrac{3^{102}-1}{8}\)

a)2A=4+4^2+4^3+...+4^101
2A-A=4^101-1
A=4^101-1
khong bit phai hoi muon gioi phai hoc

Gọi A là biểu thức ta có:
CÂU1 :A = 1.2+2.3+3.4+......+99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
3A = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300