K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

686746898

6 tháng 10 2021

mình nghĩ = 6867 46898 á.

22 tháng 5 2021

Ta thấy: 1.4 = 1.(1 + 3)

2.5 = 2.(2 + 3)

3.6 = 3.(3 + 3)

4.7 = 4.(4 + 3)

…….

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n

C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n

C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)

⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n) 

3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)

3C = n(n + 1)(n + 2) + \frac{3\left(2n\ +\ 2\right)n}{2}

⇒ C = \frac{n(n+1)(n+2)}{3} + \frac{3\left(2n\ +\ 2\right)n}{2} = \frac{n(n+1)(n+5)}{3}

19 tháng 9 2017

Đề có thiếu ko vậy bạn

19 tháng 9 2017

Tính nhanh:

2 . 31 . 12 + 4 . 6 . 42 + 8 . 27 . 3

28 tháng 8 2015

Tính S = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)
Lời giải
Ta thấy: 1.4 = 1.(1 + 3)
2.5 = 2.(2 + 3) 
3.6 = 3.(3 + 3) 
4.7 = 4.(4 + 3)
…….
n(n + 3) = n(n + 1) + 2n
Vậy S = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n
= 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n
= [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)
3S = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n) =
= 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n) =
= n(n + 1)(n + 2) +S

6 tháng 7 2019

I love you Thư 😘😘😘

6 tháng 7 2019

Love!!!

19 tháng 9 2017

\(S=1.4+2.5+3.6+4.7+...+n\left(n+3\right)\)

\(S=4+10+18+21+...+n\left(n+3\right)\)

S gồm có :

\(\dfrac{n\left(n+3\right)-4}{4}+1\) ( số hạng )

Tổng S là:

\(S=\left[n\left(n+3\right)+4\right].\left[\dfrac{n\left(n+3\right)-4}{4}+1\right]:2\)

\(S=\left(n^2+3n+4\right)\left[\dfrac{n^2+3n-4}{4}+1\right].\dfrac{1}{2}\)

\(S=\dfrac{n^2+3n+4}{2}.\dfrac{n^2+3n}{4}\)

20 tháng 9 2017

mk thấy bn làm sai rồi , khoảng cách giữa các số hạng có đều nhau đâu

11 tháng 6 2015

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=1-\frac{1}{46}

18 tháng 3 2016

Do : \(\frac{3}{1.4}=\frac{1}{1}-\frac{1}{4};\frac{3}{4.7}=\frac{1}{4}-\frac{1}{7}\).... tuong tu ... \(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)

S= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n-3}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+3}\)

S= \(1-\frac{1}{n+3}\)<1

=> S<1 (dpcm)

18 tháng 3 2016

(do : 3/ 1.4 = 1/1 - 1/4;  3/4.7= 1/4 - 1/7 ...

S= 1- 1/4 + 1/4 + 1/4 - 1/7 + ... + 1/ n - 1/ (n+3)

S= 1- 1/ (n+3) <1 

=> S <1 (dpcm)

10 tháng 6 2015

cho mìh chuc mìh giải cho

 S=\(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+...+\(\frac{3}{40.43}\)+\(\frac{3}{43.46}\)

3S=\(\frac{9}{1.4}\)+\(\frac{9}{4.7}\)+...+\(\frac{9}{40.43}\)+\(\frac{9}{43.46}\)

3S=9-\(\frac{9}{4}\)+\(\frac{9}{4}\)-\(\frac{9}{7}\)+...+\(\frac{9}{40}\)-\(\frac{9}{43}\)+\(\frac{9}{43}\)-\(\frac{9}{46}\)

3S=9-\(\frac{9}{46}\)

3S=\(\frac{405}{46}\)

 S=\(\frac{405}{46}\):3

 S=\(\frac{135}{46}\)

=> S>1 mới đúng

28 tháng 7 2017

S=\(\dfrac{3}{1.4}\)+\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{43.46}\)

S<\(\dfrac{1}{1}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+...+\(\dfrac{1}{43}\)-\(\dfrac{1}{46}\)

S< \(\dfrac{1}{1}\)-\(\dfrac{1}{46}\)

S<\(\dfrac{45}{46}\)<1

Vậy S< 1

Chúc bạn học tốt , tick cho mk nhéhihi

28 tháng 7 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{34.46}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\)

\(S=1-\dfrac{1}{46}\)

\(S=\dfrac{45}{46}< 1\)

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{34.46}< 1\)

\(\Rightarrow S< 1\) (đpcm)