Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 9
2S = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + .... + 2 ^ 10
2S - S = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + .... + 2 ^ 10 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 9 )
S = 2 ^ 10 - 1
S = 2 ^ 8 . 2 ^ 2 - 1
S = 2 ^ 8 . 4 - 1
S < 2 ^ 8 . 1 < 5 . 2 ^ 8
Vậy S < 5 . 2 ^ 8
A = 1 + 2 + 22 + 23 + .... +298
2A = 2(1 + 2 + 22 + 23 +....+298)
2A = 2 + 22 + 23 + 24 +....+299
2A - A = (2 + 22 + 23 + 24 +.....+ 299) - (1 + 2 + 22 + 23 +.....+298)
A = ( 2 - 2 ) + ( 22 - 22 ) + (23 - 23).....+(298 - 298) + 299 - 1
A = 0 + 0 + 0 +.....+0 + 299 - 1
A = 299 - 1
So sánh :
299 - 1 và 5 . 298
299 - 1 < 5 . 298
( Biết hay sai thì chịu nhe hehe phần so sánh tui
Ta có: \(S=1+3+3^2+...+3^{20}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{21}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{21}\right)-\left(1+3+3^2+...+3^{20}\right)\)
\(\Rightarrow2S=3^{21}-1\)
\(\Rightarrow S=\left(3^{21}-1\right).\frac{1}{2}\)
\(\Rightarrow S=3^{21}.\frac{1}{2}-\frac{1}{2}\)
Vì \(3^{21}.\frac{1}{2}-\frac{1}{2}< 3^{21}.\frac{1}{2}\) nên \(A< \frac{1}{2}.3^{21}\)
Vậy \(A< \frac{1}{2}.3^{21}\)
\(S=1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S-S=\left(2+2^2+2^3+...+2^{10}\right)-\left(1+2+2^2+...+2^9\right)\)
\(2S-S=2+2^2+2^3+...+2^{10}-1-2-2^2-...-2^9\)
\(S=2^{10}-1\)
\(P=4.\frac{5}{4}.2^8\)
\(P=2^2.2^8.\frac{5}{4}=2^{10}.\frac{5}{4}\)
\(\Rightarrow S< P\)