K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

\(S=2^1+2^2+2^3+...+2^{100}\)

\(S=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(S=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(S=\left(2+...+2^{97}\right)\left(1+2+2^2+2^3\right)\)

\(S=Q.15\)

\(S=Q.3.5\)

\(\Rightarrow S⋮5\) (1)

\(S=2^1+2^2+2^3+...+2^{100}\)

\(S=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(S=1\left(2^1+2^2\right)+2^2\left(2^1+2^2\right)+...+2^{97}\left(2^1+2^2\right)\)

\(S=\left(2^1+2^2\right)\left(1+2^2+...+2^{97}\right)\)

\(S=6.Q\)

\(S=2.3.Q\)

\(\Rightarrow S⋮2\) (2)

Từ (1) và (2)

\(\Rightarrow S⋮2;5\)

Vậy \(S\) có tận cùng là 0

27 tháng 2 2017

Cách này dài quá

16 tháng 12 2020
. .
16 tháng 12 2020

as molie

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

16 tháng 5 2015

3S = 3 +3^2 +3^3+...+3^31 => 2S= 3^31-1 

                              3^31= [3^4]^7 x 3^3 = [...1] ^7 x 27  = [...1] x 27 = [...7] => 2S có tận cùng là 7-1 = 6

=> S có tc là 3 hoặc 8       mà scp ko có tc là 3 hoặc 8 => S ko phải là scp

10 tháng 9 2021

bạn giang hồ đại ca làm giỏi quá

Giải:

a) \(A=1+2+2^2+2^3+...+2^{2021}\) 

\(2A=2+2^2+2^3+2^4+...+2^{2022}\) 

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\) 

\(A=2^{2022}-1\) 

Vì \(2^{2022}>2^{2021}\) nên \(A>2^{2021}\) 

b) Từ câu (a), ta có:

\(A=2^{2022}-1\) 

\(A=2^{2020}.2^2-1\) 

\(A=\left(2^4\right)^{505}.4-1\) 

\(A=16^{505}.4-1\) 

\(A=\left(\overline{...6}\right)^{505}.4-1\) 

\(A=\overline{...6}.4-1\) 

\(A=\overline{...4}-1\) 

\(A=\overline{...3}\) 

Vậy chữ số tận cùng của A là 3

c) Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}\) 

\(A=1.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{2020}.\left(1+2\right)\) 

\(A=1.3+2^2.3+...+2^{2020}.3\) 

\(A=3.\left(1+2^2+...+2^{2020}\right)⋮3\) 

Vậy \(A⋮3\left(đpcm\right)\)  

d) Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}\) 

\(A=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+...+2^{2019}.\left(1+2+2^2\right)\) 

\(A=1.7+2^3.7+...+2^{2019}.7\) 

\(A=7.\left(1+2^3+...+2^{2019}\right)⋮7\)  

Vậy \(A⋮7\left(đpcm\right)\) 

Chúc bạn học tốt!

14 tháng 6 2021

Cảm ơn nhiều

 

23 tháng 12 2015

bạn vào câu hỏi tương tự nha phương hà

23 tháng 12 2015

bạn vào câu hỏi tương tự nha

11 tháng 10 2021

a) \(A=1+2+2^2+2^3+...+2^{99}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)

b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)

\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)

\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5

c) \(A=1+2+2^2+...+2^{99}\)

\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1

=> A không chia hết cho 7