Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Sửa lại đề*
A = 21+ 22+ 23+ 24 + .. + 2100
A = (21+22) + (23+ 24) +...+ (299+ 2100)
A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)
A = 2.3 + 23. 3 + .. + 299.3
A = 3 . (21 + 23 + .... + 299)
Mà 3 chia hết cho 3
=> A chia hết cho 3
Cho S=1+3^1+3^2+3^3+...+3^30.Tìm chữ số tận cùng của S,từ đó suy ra S không phải là số chính phương.
3S = 3 +3^2 +3^3+...+3^31 => 2S= 3^31-1
3^31= [3^4]^7 x 3^3 = [...1] ^7 x 27 = [...1] x 27 = [...7] => 2S có tận cùng là 7-1 = 6
=> S có tc là 3 hoặc 8 mà scp ko có tc là 3 hoặc 8 => S ko phải là scp
Giải:
a) \(A=1+2+2^2+2^3+...+2^{2021}\)
\(2A=2+2^2+2^3+2^4+...+2^{2022}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\)
\(A=2^{2022}-1\)
Vì \(2^{2022}>2^{2021}\) nên \(A>2^{2021}\)
b) Từ câu (a), ta có:
\(A=2^{2022}-1\)
\(A=2^{2020}.2^2-1\)
\(A=\left(2^4\right)^{505}.4-1\)
\(A=16^{505}.4-1\)
\(A=\left(\overline{...6}\right)^{505}.4-1\)
\(A=\overline{...6}.4-1\)
\(A=\overline{...4}-1\)
\(A=\overline{...3}\)
Vậy chữ số tận cùng của A là 3
c) Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(A=1.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{2020}.\left(1+2\right)\)
\(A=1.3+2^2.3+...+2^{2020}.3\)
\(A=3.\left(1+2^2+...+2^{2020}\right)⋮3\)
Vậy \(A⋮3\left(đpcm\right)\)
d) Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(A=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+...+2^{2019}.\left(1+2+2^2\right)\)
\(A=1.7+2^3.7+...+2^{2019}.7\)
\(A=7.\left(1+2^3+...+2^{2019}\right)⋮7\)
Vậy \(A⋮7\left(đpcm\right)\)
Chúc bạn học tốt!
a) \(A=1+2+2^2+2^3+...+2^{99}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)
b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)
\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)
\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5
c) \(A=1+2+2^2+...+2^{99}\)
\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1
=> A không chia hết cho 7
\(S=2^1+2^2+2^3+...+2^{100}\)
\(S=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(S=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(S=\left(2+...+2^{97}\right)\left(1+2+2^2+2^3\right)\)
\(S=Q.15\)
\(S=Q.3.5\)
\(\Rightarrow S⋮5\) (1)
\(S=2^1+2^2+2^3+...+2^{100}\)
\(S=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(S=1\left(2^1+2^2\right)+2^2\left(2^1+2^2\right)+...+2^{97}\left(2^1+2^2\right)\)
\(S=\left(2^1+2^2\right)\left(1+2^2+...+2^{97}\right)\)
\(S=6.Q\)
\(S=2.3.Q\)
\(\Rightarrow S⋮2\) (2)
Từ (1) và (2)
\(\Rightarrow S⋮2;5\)
Vậy \(S\) có tận cùng là 0
Cách này dài quá