K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

Ta có:

11 < 10001000

22 < 10001000

33 < 10001000

....

999999 < 10001000

10001000 = 10001000

=> B = 1+ 2+ 3+ ...+ 999999 + 10001000 < 10001000 + ...+ 10001000 (Có 1000 số 10001000)  

=> B < 1000.10001000 = 10001001 = A

Vậy B < A

Ta có:

11 < 10001000

22 < 10001000

............

999999 < 10001000

10001000 = 10001000

=> B = 1+ 2+ 3+ ...+ 999999 + 10001000 < 10001000 + ...+ 10001000 (Có 1000 số 10001000)  

<=> B < 1000.10001000 = 10001001 = A

Vậy.................

hok tốt

30 tháng 9 2015

B > A 

vừa nhìn đã bít

1 tháng 10 2015

Ta thấy S có 10 só hạng

\(\Rightarrow S=1+2+2^2+...+2^9=\left(1+2^9\right).10:2=\left(1+2^9\right).5\)

Mà: \(1+2^9>2^8\Rightarrow S>5.2^8\)

4 tháng 12 2016

sai bét

17 tháng 12 2019

S=1+2+2^2+2^3+....+2^9

2S=2+2^2+2^3+.....+2^10

2S-S=2^10-1

=>S=2^10-1

      =1024-1

      =1023

5.2^8=5.256=1280

Vì 1023<1280=>S<5.2^8

17 tháng 12 2019

1+2+22+23+24+.........+29

2S= 2+22+23+24+........+29+210

2S-S= ( 2+22+23+24+........+29+210)-(1+2+22+23+24+.........+29)

S= 210-1

Ta có: 5.28= (4+1).28

                 = 4.28+ 28

                    = 22.28+28

                = 210+28

=> 210-1 < 210+28

Hay S < 5.28

24 tháng 10 2018

\(S=1+3+3^2+3^3+...+3^{48}+3^{49}.\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)

\(S=1\left(1+3\right)+3^2\left(1+3\right)+..+3^{48}\left(1+3\right)\)

\(S=4\left(1+3^2+....+3^{48}\right)\)

\(\Rightarrow S⋮4\)

b, Có : \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)

\(\Rightarrow3S=3+3^2+3^3+...+3^{48}+3^{49}+3^{50}\)

=> 3S - S = ( 1 + 3 + 32 + 33  + ..... + 348 + 349  ) - ( 3 + 33 + 33 + .. + 349 + 350)

\(\Rightarrow2S=3^{50}-1\)

\(\Rightarrow S=\frac{3^{50}-1}{2}\)

\(\Rightarrow3^{50}-1=\left(...9\right)-1=\left(...8\right)\)( tận cùng là 8 )

\(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{....8}{2}=\left(...4\right)\)

=> S có tận cùng là 4 

24 tháng 10 2018

a) \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)

\(S=4+\left(3^2.1+3^2.3\right)+...+\left(3^{48}.1+3^{48}.3\right)\)

\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)

\(S=1.4+3^2.4+...+3^{48}.4\)

\(S=\left(1+3^2+....+3^{48}\right).4⋮4\)