K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100
=﴾1/1.2+1/3.4﴿+﴾1/5.6+...+1/99.100﴿
=7/12+﴾1/5.6+...+1/99.100﴿>7/12﴾1﴿
A=1‐1/2+1/3‐1/4+1/5‐1/6+...+1/99‐1/100
=﴾1+1/3+1/5+...+1/99﴿‐﴾1/2+1/4+..+1/100﴿
=﴾1+1/2+1/3+1/4+..+1/99+1/100﴿‐2﴾1/2+1/4+....+1/100﴿ ﴾ cộng thêm cả 2 vế với 1/2+1/4+..+1/100﴿
=﴾1+1/2+1/3+..+1/100﴿‐﴾1+1/2+..+1/50﴿
=1/51+1/52+..+1/100
dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm
A=﴾1/51+1/52+..+1/60﴿+﴾1/61+1/62+..+1/70﴿+﴾1/71+1/72+..+1/80﴿+﴾1/81+..+1/90﴿+﴾1/91+..+1/100﴿
<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6
=>A<5/6﴾2﴿
từ 1 và 2 =>đpcm

18 tháng 8 2017

\(S=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

Ta thấy \(\frac{1}{1.2}=\frac{1}{1.2};\frac{1}{3.4}< \frac{1}{2.3};\frac{1}{5.6}< \frac{1}{3.4};.....;\frac{1}{99.100}=\frac{1}{98.99}\)

Khi đó \(S=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}=B\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-.....+\frac{1}{98}-\frac{1}{99}\)

\(B=1-\frac{1}{99}=\frac{98}{99}< \frac{5}{6}\)

Suy ra \(S< \frac{5}{6}\)

mình ko chắc , mới lên lớp 7 :v

5 tháng 7 2015

\(A=\frac{1}{2}+\frac{1}{12}+...+\frac{1}{9900}>\frac{1}{2}+\frac{1}{12}=\frac{7}{12}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\left(1-\frac{1}{2}+\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)-\frac{1}{100}<\left(1-\frac{1}{2}+\frac{1}{3}\right)=\frac{5}{6}\)

=> điều phải c/m nha

4 tháng 10 2019

Ta có: A=1/1.2+1/3.4+1/5.6+...+1/99.100

             =1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100

             =1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100-2(1/2+1/4+1/6+...+1/100)

             =1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100-(1+1/2+1/3+1/4+...+1/50)

             =1/26+1/27+1/28+...+1/100)

Do đó A=(1/51+1/52+...+1/75)+(1/76+1/77+...+1/100)

Ta có 1/51>1/52>...>1/75 và 1/76>1/77>...>1/100 nên

A>1/75.25+1/100.25=1/3+1/4=7/12

A<1/51.25+1/76.25<1/50.25+1/75.25=1/2+1/3=5/6

Vậy nên 7/12<A<5/6

3 tháng 9 2016

a)A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) > 1 / (1*2) + 1 / (3*4) = 1 / 2 + 1 / 12 = 7 / 12 ♦ 
A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100) = 
(1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 
1 - 1 / 2 + 1 / 3 = 5 / 6 ♥ 
♦, ♥ => 7 / 12 < A < 5 / 6

b)ta có:

1/1.2+1/3.4+1/5.6+...+1/49.50

=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50

=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)

=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2

=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)

=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50

hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50

14 tháng 6 2016

Ta có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) > 1 / (1.2) + 1 / (3.4) = 1 / 2 + 1 / 12 = 7 / 12 (1)
Lại có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100)

                =  (1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 <  1 - 1 / 2 + 1 / 3 = 5 / 6 (2)
Từ (1) và (2) => 7 / 12 < A < 5 / 6

16 tháng 9 2016

cưc hay

 

A = 1/1x2 + 1/3x4 + 1/4x5 + 1/5x6 + ..... + 1/99x100

A = 1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + .... + 1/99 - 1/100

A = 1 - 1/100

A = 99/100

Truong Quang Minh vào đây tham khảo nha:/hoi-dap/question/119017.html