Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+5+14+...+\dfrac{3^{n-1}+1}{2};\left(n\in N\backslash\left\{0\right\}\right)\)
\(2S=2+4+10+28+....+\left(3^{n-1}+1\right)=S_1\)
\(2S=\left[1+1+....+n\right]+\left[1+3+9+..+3^{n-1}\right]\)
\(S_1=1+1+1+..+n=n\)
\(S_2=1+3+9+....+3^{n-1}\)
\(3S_2=3+9+...+3^n\)
\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\dfrac{3^n-1}{2}\)
\(S=\dfrac{s_1+s_2}{2}=\dfrac{n+\dfrac{3^n-1}{2}}{2}=\dfrac{3^n+2n-1}{4}\)
Sn = [ 1 + 3 + 5 +...+ (2n + 1 ) ] - [2 + 4 + 6 +...+ 2n]
Ta có nhóm thứ nhất là một cấp số cộng có công sai là d=2, só hạn đầu u1 = 1
=> Nên Sn1 = nu1 + 1/2*n(n-1)*d = n + n(n - 1)
Tương tự nhóm thứ hai là một cấp số cộng có công sai là d=2, số hạn đầu v1 = 2
> Nên Sn2 = nv1 + 1/2*n(n-1)*d = 2n + n(n-1)
Sn = Sn1 - Sn2 = -n
Vậy S35 + S60 = -35 + (-60) = -95
Sn = [ 1 + 3 + 5 +...+ (2n + 1 ) ] - [2 + 4 + 6 +...+ 2n]
Ta có nhóm thứ nhất là một cấp số cộng có công sai là d=2, só hạn đầu u1 = 1
=> Nên Sn1 = nu1 + 1/2*n(n-1)*d = n + n(n - 1)
Tương tự nhóm thứ hai là một cấp số cộng có công sai là d=2, số hạn đầu v1 = 2
> Nên Sn2 = nv1 + 1/2*n(n-1)*d = 2n + n(n-1)
Sn = Sn1 - Sn2 = -n
Vậy S35 + S60 = -35 + (-60) = -95
nhận thấy S(2n) =(1-2)+(2-4)+.. +[(2n-1)-2n] =(-1)+ (-1)+ ...+(-1) = -n
S(2n-1)= 1+(-2+3)+(-4+5) + ...+ [(-2n+2)+(2n-1)] =1+1+..+1 =n
Từ đó S(35) = S(2.18-1) = 18
S(60) =S(2.30) =-30 --> S(35)+S(60) =18-30= -12
Ta có:
\(S=\frac{1}{1.2:2}+\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{n.\left(n+1\right):2}\)
\(\frac{1}{2}S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(\frac{1}{2}S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(\frac{1}{2}S=1-\frac{1}{n}< 1\)
\(S< 2\)
Vậy...