Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Trên tia MA lấy điểm I sao cho MI=MC
Dễ thấy ΔCIMΔCIM đều ⇒MC=CI⇒MC=CI
Xét 2 tam giác ΔAICΔAICvàΔBMCvàΔBMC có
IC=MCIC=MC
∠IAC=∠MCB∠IAC=∠MCB (vì cùng cộng với ∠BCI=60∘∠BCI=60∘)
AC=BCAC=BC
Do đó ΔAICΔAIC = ΔBMCΔBMC
⇒AI=BM⇒AI=BM
⇒⇒ Đpcm
b) Dễ thấy ΔBAM∼ΔDCMΔBAM∼ΔDCM(g.g)
nên AMCM=BMDM⇒AM.DM=CM.BMAMCM=BMDM⇒AM.DM=CM.BM
⇒AMBM.CM=1MD⇒AMBM.CM=1MD
Áp dụng kết quả câu (a) ta có đpcm
c) Đặt MA=x, MB=y. Ta có
AM2+BM2+CM2=x2+y2+(x−y)2=2(x2+y2−xy)AM2+BM2+CM2=x2+y2+(x−y)2=2(x2+y2−xy) (1)
Kẻ BHBH vuông góc với AMAM
Do ∠BMH=60∘∠BMH=60∘ nên MH=y2,BH2=y2−(y2)2=3y24MH=y2,BH2=y2−(y2)2=3y24
do đó AB2=AH2+BH2=x2+y2−xyAB2=AH2+BH2=x2+y2−xy (2)
Từ (1) và (2) ⇒MA2+MB2+MC2=2AB2⇒MA2+MB2+MC2=2AB2 mà ΔABCΔABC đều
nên AB=R√3
k cho mình nha!!
\(\dfrac{1}{\sqrt{5}-2}+\dfrac{10}{\sqrt{5}}\)
\(=\dfrac{1\cdot\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}+\dfrac{2\sqrt{5}\cdot\sqrt{5}}{\sqrt{5}}\)
\(=\dfrac{\sqrt{5}+2}{5-2^2}+2\sqrt{5}\)
\(=\dfrac{\sqrt{5}+2}{1}+2\sqrt{5}\)
\(=\sqrt{5}+2+2\sqrt{5}\)
\(=3\sqrt{5}+2\)
ai giải giúp với nào