K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1

a.

\(\left\{{}\begin{matrix}SE\perp\left(EFGH\right)\\GF\in\left(EFGH\right)\end{matrix}\right.\) \(\Rightarrow SE\perp GF\)

b.

\(\left\{{}\begin{matrix}SE\perp\left(EFGH\right)\Rightarrow SE\perp GH\\GH\perp EH\left(\text{EFGH là hình vuông}\right)\end{matrix}\right.\) 

\(\Rightarrow GH\perp\left(SHE\right)\)

c.

\(\left\{{}\begin{matrix}SE\perp\left(EFGH\right)\Rightarrow SE\perp HE\\HE\perp EF\left(\text{EFGH là hình vuông}\right)\end{matrix}\right.\)

\(\Rightarrow HE\perp\left(SEF\right)\)

c.

\(\left\{{}\begin{matrix}SE\perp\left(EFGH\right)\\HE\in\left(EFGH\right)\end{matrix}\right.\) \(\Rightarrow SE\perp HE\)

\(\Rightarrow\) Góc giữa SE và HE là 90 độ

d.

Không thể xác định cụ thể được số đo góc giữa 2 đường thẳng này, do nó phụ thuộc vào độ dài đoạn SE. Góc giữa 2 đường thẳng này bằng góc SGH  do EF song song GH

(Góc giữa SG và HF thì xác định được)

a: ta có: BC\(\perp\)AB(ABCD là hình vuông)

BC\(\perp\)SA(SA\(\perp\)(ABCD))

AB,SA cùng thuộc mp(SAB)

Do đó: BC\(\perp\)(SAB)

b: Ta có: BD\(\perp\)AC(ABCD là hình vuông)

BD\(\perp\)SA(SA\(\perp\)(ABCD))

AC,SA cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

c: Ta có: BC\(\perp\)(SAB)

AH\(\subset\)(SAB)

Do đó: BC\(\perp\)AH

Ta có: AH\(\perp\)SB

AH\(\perp\)BC

SB,BC cùng thuộc mp(SBC)

Do đó: AH\(\perp\)(SBC)

d: Ta có: AH\(\perp\)(SBC)

SC\(\subset\)(SBC)

Do đó: AH\(\perp\)SC

Ta có: CD\(\perp\)SA(SA\(\perp\)(ABCD))

CD\(\perp\)AD(ABCD là hình vuông)

SA,AD cùng thuộc mp(SAD)

Do đó: CD\(\perp\)(SAD)

=>AK\(\perp\)CD

mà AK\(\perp\)SD

và CD,SD cùng thuộc mp(SCD)

nên AK\(\perp\)(SCD)

=>AK\(\perp\)SC

Ta có: SC\(\perp\)AK

SC\(\perp\)AH

AK,AH cùng thuộc mp(AKH)

Do đó: SC\(\perp\)(AKH)

a: BC vuông góc SA

BC vuôg góc AB

=>BC vuông góc (SAB)

b: BI vuông góc SA
BI vuông góc AC

=>BI vuông góc (SAC)

a: BH vuông góc SA

BH vuông góc AC

=>BH vuông góc (SAC)

b: (SC;ABCD)=(CS;CA)=góc SCA

\(AC=\sqrt{a^2+\left(\dfrac{1}{5}a\right)^2}=\dfrac{a\sqrt{26}}{5}\)

\(SC=\sqrt{SA^2+AC^2}=\dfrac{3\sqrt{14}}{5}\)a

\(sinSCA=\dfrac{SA}{SC}=\dfrac{2a}{\dfrac{3\sqrt{14}}{5}a}=\dfrac{5\sqrt{14}}{21}\)

=>góc SCA=63 độ

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l}\left. \begin{array}{l} + )AC \bot BD\,\,\left( {hv\,\,ABCD} \right)\\SA \bot BD\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\\AC \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BD \bot \left( {SAC} \right)\\\left. \begin{array}{l} + )BD \bot SC\left( {BD \bot \left( {SAC} \right)} \right)\\BM \bot SC\\BD \cap BM = \left\{ B \right\}\end{array} \right\} \Rightarrow SC \bot \left( {MBD} \right)\end{array}\)

Gọi \(AC \cap BD = \left\{ O \right\}\)

\(\left. \begin{array}{l}SC \bot \left( {MBD} \right)\\OM \subset \left( {MBD} \right)\end{array} \right\} \Rightarrow SC \bot OM\)

Mà \(AH \bot SC\)

\( \Rightarrow AH//OM,OM \subset \left( {MBD} \right) \Rightarrow AH//\left( {MBD} \right)\)

NV
16 tháng 3 2022

a.

\(\Delta_VSAB=\Delta_VSAD\left(c.g.c\right)\Rightarrow AB_1=AD_1\)

\(\Rightarrow SB_1=SD_1\Rightarrow\dfrac{SB_1}{SB}=\dfrac{SD_1}{SD}\)

\(\Rightarrow B_1D_1||BD\) (Talet đảo)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AB_1\)

\(\Rightarrow AB_1\perp\left(SBC\right)\Rightarrow AB_1\perp SC\)

Hoàn toàn tương tự: \(AD_1\perp\left(SCD\right)\Rightarrow AD_1\perp SC\)

\(\Rightarrow SC\perp\left(AB_1D_1\right)\)

b.

\(\left\{{}\begin{matrix}SC\perp AC_1\\SC\perp\left(AB_1D_1\right)\end{matrix}\right.\) \(\Rightarrow AC_1\in\left(AB_1D_1\right)\)

\(\Rightarrow\) 4 điểm \(A;B_1;C_1;D_1\) đồng phẳng

Theo chứng minh câu a, \(AB_1\perp\left(SBC\right)\Rightarrow AB_1\perp B_1C_1\) (1)

\(AD_1\perp\left(SCD\right)\Rightarrow AD_1\perp\left(D_1C_1\right)\)

\(\Rightarrow B_1;D_1\) cùng nhìn \(AC_1\) dưới 1 góc vuông nên tứ giác \(AB_1C_1D_1\) nội tiếp đường tròn đường kính \(AC_1\)

NV
16 tháng 3 2022

c.

Gọi E là trung điểm BC

\(\Rightarrow C_1E\) là đường trung bình tam giác SBC

\(\Rightarrow C_1E||SB\Rightarrow\widehat{SB;AC_1}=\widehat{\left(C_1E;AC_1\right)}=\widehat{AC_1E}\)

\(SB=\sqrt{SA^2+AB^2}=a\sqrt{3}\)

\(C_1E=\dfrac{1}{2}SB=\dfrac{a\sqrt{3}}{2}\) 

 \(AE=\sqrt{AB^2+BE^2}=\sqrt{AB^2+\left(\dfrac{BC}{2}\right)^2}=\dfrac{a\sqrt{5}}{2}\)

\(\dfrac{1}{AC_1^2}=\dfrac{1}{SA^2}+\dfrac{1}{AC^2}\Rightarrow AC_1=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=a\)

Áp dụng định lý hàm cos cho tam giác \(AEC_1\):

\(cos\widehat{AC_1E}=\dfrac{AC_1^2+C_1E^2-AE^2}{2AC_1.C_1E}=0\Rightarrow\widehat{AC_1E}=90^0\)