K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

\(S=1+2+2^2+2^3+...+2^{62}+2^{63}\)

\(2S=2\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)

\(2S=2+2^2+2^3+2^4+...+2^{63}+2^{64}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{63}+2^{64}\right)-\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)

\(S=2^{64}-1\)

16 tháng 12 2019

Bài toán làm theo kiểu 2.S là được nếu là 3x thì sử dụng 3.S. Tương tự như vậy

Ta có: 1 + 2 + 22 + 23 +...+ 262 + 263

\(\Rightarrow\) 2.(1 + 2 + 22 + 23 +...+ 262 + 263) trừ (1 + 2 + 22 + 23 +...+ 262 + 263) = 1 + 2 + 22 + 23 +...+ 262 + 263

= (2 + 22 + 23 + 24 +...+ 263 + 264) trừ (1 + 2 + 22 + 23 +...+ 262 + 263)

(Sử dụng phương pháp chịt tiêu: (là thế này nè)

 (2 + 22 + 23 + 24 +...+ 263 + 264) trừ (1 + 2 + 22 + 23 +...+ 262 + 263)

Còn lại 264 trừ 1)

= 264 trừ 1

Vậy S = 264 trừ 1

4 tháng 3 2020

S = 1 - 2 + 22 - 23 + ....... + 22020

2S = 2(1 - 2 + 22 - 23 + ....... + 22020)

2S = 2 - 22 + 23 - 24 + ....... + 22021

S = (2 - 22 + 23 - 24 + ....... + 22021) - (1 - 2 + 22 - 23 + ....... + 22020)

S = 22021 - 1

3S = 3(22021 - 1)

3S - 22021 = 3(22021 - 1) - 22021

3S - 22021 = 3.22021 - 3 - 22021

➤ 3S - 22021 = 22021 . 2 - 3

27 tháng 11 2016

sao ko dung f(x) ma viet

\(a=2+2^2+2^3+2^4+2^5+2^6+2^7+2^9+2^{10}\)

a=\(\left(2+2^2\right)+2^2.\left(2+2^2\right)+..+2^8\left(2+2^2\right)\)

a=\(\left(2+2^2\right).\left(1+2^2+..+2^8\right)\)

a=\(6.\left(1+2^2+2^4+2^6+2^8\right)\)

chia het cho 3

5 tháng 2 2016

S = - 504

olm duyệt đi

5 tháng 2 2016

tinh the nao ma ra nhu the day

 

DD
27 tháng 10 2021

\(A=2^1+2^2+2^3+...+2^{2010}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+...+2^{2010}\)

\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

25 tháng 11 2023

=(21+22)+(23+24)+...+(22009+22010)

=2(1+2)+23(1+2)+...+22009(1+2)

=3(2+23+...+22009)⋮3

�=21+22+23+...+22010

=(21+22+23)+(24+25+26)+...+(22008+22009+22010)

=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)

=7(2+24+...+22008)⋮7

14 tháng 10 2019

 \(10^6\) tận cùng là 0 \(=>10^6+2\) tận cùng là 2 \(=>10^6+2\) chia hết cho 2