Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
=>-3<n<=4
hay \(n\in\left\{-2;-1;0;1;2;3;4\right\}\)
a, A= 1/5.6+1/6.7+1/7.8+...+1/24.25
=1/5-1/6+1/6-1/7+1/7-1/8+...+1/24-1/25
=1/5-1/25
=4/25
hok tốt k nha
A = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9
= 1- 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9
= 1 - 1/9 = 8/9
Câu B, C dấu * là nhân hay công vậy?
\(m.\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{23}\right)\)
\(=\frac{31}{23}-\frac{7}{32}-\frac{8}{23}\)
\(=\left(\frac{31}{23}-\frac{8}{23}\right)-\frac{7}{32}\)
\(=1-\frac{7}{32}=\frac{25}{32}\)
\(n.\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
\(=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
\(=\frac{1}{3}+\left(-1\right)+1\)
\(=\frac{1}{3}\)
\(o.\frac{38}{45}-\left(\frac{8}{45}-\frac{17}{51}-\frac{3}{11}\right)\)
\(=\frac{38}{45}-\frac{8}{45}+\frac{17}{51}+\frac{3}{11}\)
\(=\left(\frac{38}{45}-\frac{8}{45}\right)+\left(\frac{17}{51}+\frac{3}{11}\right)\)
\(=\frac{2}{3}+\frac{20}{33}\)
\(=\frac{22}{33}+\frac{20}{33}=\frac{42}{33}=\frac{14}{11}\)
a: \(A=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)
b: \(B=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{57}+\dfrac{1}{57}-\dfrac{1}{87}\)
\(=\dfrac{2}{15}+\dfrac{1}{8}-\dfrac{1}{87}\)
=859/3480
a) 19 + (29 - 9*37) - (63*9 - 29*99)
= 19 + 29 - 9*37 - 63*9 + 29*99
= 19 + 29(1 + 99) - 9(37 + 63)
= 19 + 29*100 - 9*100
= 19 + 100(29 - 9)
= 19 + 100*20
= 19 + 2000 = 2019
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
= \(\frac{2^6+2^5+2^4+2^3+2^2+2+1}{2^7}\)
= \(\frac{64+32+16+8+4+2+1}{128}\) = \(\frac{127}{128}\)
có sai đề bài ko vậy