K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2021

Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).

 mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:

(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.

Vậy chữ số tận cùng của tổng S là 9.

13 tháng 9 2021

Ta thấy : Tất cả các lũy thừa của S đều có số mũ chia cho 4 sẽ dư 1.

=> Tất cả các lũy thừa của S đều có chữ số tận cùng giống nhau.

Chữ số tận cùng của tổng S là :

   ( 2 + 3 + 4 + .... + 9 ) + 199 . ( 1 + 2 + ... + 9 ) + 1 + 2 + 3 + 4

S = 200 ( 1 + 2 + 3 + ... + 9 ) + 9

S = 9009.

14 tháng 10

 

????

 

23 tháng 12 2016

Bài 1:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)

\(\Rightarrow P=\frac{-7}{15}\)

Vậy \(P=\frac{-7}{15}\)

Bài 2:
Ta có: \(S=23+43+63+...+203\)

\(\Rightarrow S=13+10+20+23+...+103+100\)

\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)

\(\Rightarrow S=3025+450\)

\(\Rightarrow S=3475\)

Vậy S = 3475

23 tháng 12 2016

1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

=> P = \(\frac{1}{5}-\frac{2}{3}\)

P = \(\frac{3}{15}-\frac{10}{15}\)

=> P =\(\frac{-7}{15}\)

2. ta có:

S = 23 + 43 + 63 +...+ 203

=> S = 13 + 10 + 23 + 20 +...+ 103 + 100

=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )

=> S = 3025 + 550

=> S = 3575

Vậy S = 3575

24 tháng 5 2016

sao chị không hiểu em ghi cái gì hết

S = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ... + ( 2001 + 2001 - 2003 - 2004 ) + ( 2005 + 2006 )

S = ( - 4 ) + ( - 4 ) + .... + ( - 4 ) + ( 2005 + 2006 )

Dãy S có : 2004 - 1 : 1 + 1 = 2004 số hạng

Dãy số S : 2004 : 4  = 501 số ( - 4 )

Dãy đó S = -4 x 501 = -2004 

S = -2004 + ( 2005 + 2006 ) 

S = -2004 + 4011

S = 2007

9 tháng 1 2022

ta có  \(2004+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)

         \(=\left(1+\frac{2003}{2}\right)+\left(1+\frac{2002}{3}\right)...\left(1+\frac{1}{2004}\right)+1\)

         \(=\frac{2005}{2}+\frac{2005}{3}+...+\frac{2005}{2004}+\frac{2005}{2005}\)

         \(=2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)\)

          \(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2005}}{\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}}\)

         \(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}}{2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)}\)

         \(=\frac{1}{2005}\)