K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2022

`Answer:`

\(S=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(S=\frac{1}{4.4}+\frac{1}{6.6}+\frac{1}{8.8}+...+\frac{1}{2n.2n}\)

\(S< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right).2n}\)

\(S< \frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right).2n}\right)\)

\(S< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)

\(S< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)\)

\(S< \frac{1}{4}\)

10 tháng 8 2017

\(S=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Ta có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow S< \frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-1\right)n}\right)\)

\(\Leftrightarrow S< \frac{1}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(\Rightarrow S< \frac{1}{4}\left(1-\frac{1}{n}\right)< \frac{1}{4}\) (đpcm)

17 tháng 10 2018

\(a,M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

\(M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(M< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(M< 1-\dfrac{1}{n}< 1\)

\(\Rightarrow M< 1\left(đpcm\right)\)

\(b,N=\dfrac{1}{4^2}+\dfrac{1}{6^6}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}\)

\(N< \dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(N< \dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)

\(N< \dfrac{1}{3}-\dfrac{1}{2n+1}< \dfrac{1}{3}\)

\(c,\)\(a< b\Rightarrow2a< a+b\)

\(c< d\Rightarrow2c< c+d\)

\(m< n\Rightarrow2m< m+n\)

\(\Rightarrow2a+2c+2m=2.\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\dfrac{a+c+m}{a+b+c+d+m}< \dfrac{1}{2}\)

9 tháng 4 2017

Ta có

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}.1=\frac{1}{4}\)

=> ĐPCM