Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\frac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\sqrt{7}\cdot\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\sqrt{3}+\sqrt{5}\)
b) Ta có: \(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}\)
\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}+\frac{\sqrt{5}-\sqrt{4}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\frac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+2-\sqrt{3}+\sqrt{5}-2+\sqrt{6}-\sqrt{5}\)
\(=-1+\sqrt{6}\)
\(a)\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}-1=1\)
\(b)\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{33-2.3.\sqrt{4}.\sqrt{6}}\)
\(=3-\sqrt{6}+\sqrt{33-2.3.\sqrt{24}}\)
\(=3-\sqrt{6}+\sqrt{\left(\sqrt{24}-3\right)^2}\)
\(=3-\sqrt{6}+\sqrt{24}-3\)
\(=\sqrt{24}-\sqrt{6}\)
\(=\sqrt{6}\left(2-1\right)=\sqrt{6}\)
\(c)\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
\(=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}+\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}\)
\(=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{4}}+\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{4}}\)
\(=\frac{3-\sqrt{5}}{2}+\frac{3+\sqrt{5}}{2}\)
\(=\frac{6}{2}=3\)
\(d)\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)
\(=\frac{24}{2}=12\)
a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))
=\(\sqrt{2006}^2-\sqrt{2005}^2\)
=2006-2005
=1
1) \(\sqrt{36+12\sqrt{5}}=\sqrt{\left(\sqrt{30}+\sqrt{6}\right)^2}=\sqrt{30}+\sqrt{6}\)
2)\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}=\sqrt{18}-\sqrt{3}\)
3)\(\sqrt{6-2\sqrt{5}}-\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{9}-1\right)^2}\)
\(=\sqrt{5}-1-\left(\sqrt{9}-1\right)\)
\(=\sqrt{5}-\sqrt{9}\)
4)\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1-\left(\sqrt{2-1}\right)=2\)
5) \(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)=2\sqrt{3}\)
6)\(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}-\left(3-\sqrt{2}\right)=2\sqrt{2}-1\)
7)\(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}=\sqrt{\left(\sqrt{20}-1\right)^2}+\sqrt{\left(\sqrt{20}+1\right)^2}\)
\(=\sqrt{20}-1+\sqrt{20+1}=2\sqrt{20}\)