Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\left(\sqrt{2+\sqrt{3}}\right)\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2\left(2+\sqrt{3}\right)}\)
\(=\left(2\sqrt{3}+2-3-\sqrt{3}\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{3+2\sqrt{3}+1}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)|\sqrt{3}+1|\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}\right)^2-1^2\)
\(=3-1\)
\(=2\)
A = \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
A = \(\sqrt{2}+1-\sqrt{2}+1\)
A = 2
B = \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
B = \(2-\sqrt{3}+\sqrt{3}+2\)
B = 4
\(\frac{\sqrt{9-4\sqrt{5}}}{2-\sqrt{5}}\)
= \(\frac{\sqrt{2^2-2\sqrt{5}2+\sqrt{5^2}}}{2-\sqrt{5}}\)
= \(\frac{\sqrt{\left(2-\sqrt{5}\right)^2}}{2-\sqrt{5}}\)
= \(\frac{\sqrt{5}-2}{2-\sqrt{5}}\)
= -1
Chúc bạn làm bài tốt :)
\(A=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)=2\)
\(B=\sqrt{18+8\sqrt{2}}+\sqrt{18-8\sqrt{2}}=\sqrt{\left(\sqrt{2}+4\right)^2}+\sqrt{\left(4-\sqrt{2}\right)^2}=4+\sqrt{2}+4-\sqrt{2}=8\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}=\sqrt{6+\frac{2\sqrt{2}}{\sqrt{2}}.\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2.\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a/ \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}=2\sqrt{4.2.5\sqrt{4.3}}-2\sqrt{\sqrt{25.3}}-3\sqrt{5\sqrt{16.3}}\)
= \(2.2\sqrt{2.5.2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5.4\sqrt{3}}=4.2\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-3.2\sqrt{5\sqrt{3}}\)
= \(\sqrt{5\sqrt{3}}\left(8-2-6\right)=\sqrt{5\sqrt{3}}.0=0\)
b/ \(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}=2\sqrt{2.4\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{4.5\sqrt{3}}\)
= \(4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)
1. Trục căn thức ở mẫu:
\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)
=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)
\(=\frac{\sqrt{2009}-1}{4}\)
2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)
\(=6+3x\)
=> \(x^3-3x=6\)
=> \(B=x^3-3x+2000=6+2000=2006\)
\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)
Đặt A= .....
A\(^2\)= \(2+\sqrt{3}\)+\(2-\sqrt{3}\)+ \(2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
A\(^2\)= 4 + \(2\sqrt{2^2-\left(\sqrt{3}\right)^2}\)
A\(^2\)= 4 + \(2\sqrt{4-3}\)
A\(^2\)= 4 +2=6
Vây A=\(\sqrt{6}\)
\(=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}\)
\(=\frac{2}{\sqrt{2}}\)
\(=\sqrt{2}\)
Đặt \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
Ta có: \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{3}+1-\sqrt{3}+1\)
\(\Leftrightarrow A\sqrt{2}=2\)
\(\Leftrightarrow A=\sqrt{2}\)