\(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2020

\(=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}\)

\(=\frac{2}{\sqrt{2}}\)

\(=\sqrt{2}\)

19 tháng 9 2020

Đặt \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

Ta có: \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

    \(\Leftrightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

    \(\Leftrightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

    \(\Leftrightarrow A\sqrt{2}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

    \(\Leftrightarrow A\sqrt{2}=\sqrt{3}+1-\sqrt{3}+1\)

    \(\Leftrightarrow A\sqrt{2}=2\)

    \(\Leftrightarrow A=\sqrt{2}\)

5 tháng 9 2020

\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\left(\sqrt{2+\sqrt{3}}\right)\)  

\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2\left(2+\sqrt{3}\right)}\)   

\(=\left(2\sqrt{3}+2-3-\sqrt{3}\right)\sqrt{4+2\sqrt{3}}\)  

\(=\left(\sqrt{3}-1\right)\sqrt{3+2\sqrt{3}+1}\)  

\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\) 

\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)   

\(=\left(\sqrt{3}-1\right)|\sqrt{3}+1|\)    

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)  

\(=\left(\sqrt{3}\right)^2-1^2\)  

\(=3-1\)   

\(=2\)

24 tháng 7 2020

A = \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

A = \(\sqrt{2}+1-\sqrt{2}+1\)

A = 2

24 tháng 7 2020

B = \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

B = \(2-\sqrt{3}+\sqrt{3}+2\)

B = 4

20 tháng 7 2016

\(\frac{\sqrt{9-4\sqrt{5}}}{2-\sqrt{5}}\)

\(\frac{\sqrt{2^2-2\sqrt{5}2+\sqrt{5^2}}}{2-\sqrt{5}}\)

\(\frac{\sqrt{\left(2-\sqrt{5}\right)^2}}{2-\sqrt{5}}\)

\(\frac{\sqrt{5}-2}{2-\sqrt{5}}\)

= -1

Chúc bạn làm bài tốt :)

1 tháng 10 2016

\(A=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)=2\)

\(B=\sqrt{18+8\sqrt{2}}+\sqrt{18-8\sqrt{2}}=\sqrt{\left(\sqrt{2}+4\right)^2}+\sqrt{\left(4-\sqrt{2}\right)^2}=4+\sqrt{2}+4-\sqrt{2}=8\)

\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}=\sqrt{6+\frac{2\sqrt{2}}{\sqrt{2}}.\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2.\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

18 tháng 8 2016

a/ \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}=2\sqrt{4.2.5\sqrt{4.3}}-2\sqrt{\sqrt{25.3}}-3\sqrt{5\sqrt{16.3}}\)

\(2.2\sqrt{2.5.2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5.4\sqrt{3}}=4.2\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-3.2\sqrt{5\sqrt{3}}\)

\(\sqrt{5\sqrt{3}}\left(8-2-6\right)=\sqrt{5\sqrt{3}}.0=0\)

18 tháng 8 2016

b/ \(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}=2\sqrt{2.4\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{4.5\sqrt{3}}\)

\(4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)

 

13 tháng 6 2019

giải giúp mình đi mai là mình đi học rồi

13 tháng 6 2019

Ta có:

bla bla ........

vậy đáp số là... quên mất rồi

30 tháng 10 2019

1. Trục căn thức ở mẫu:

\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)

=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)

\(=\frac{\sqrt{2009}-1}{4}\)

2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)

\(=6+3x\)

=> \(x^3-3x=6\)

=> \(B=x^3-3x+2000=6+2000=2006\)

30 tháng 10 2019

\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)

\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)

26 tháng 6 2017

Đặt  A= .....

 A\(^2\)\(2+\sqrt{3}\)+\(2-\sqrt{3}\)\(2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)

A\(^2\)= 4 + \(2\sqrt{2^2-\left(\sqrt{3}\right)^2}\)

A\(^2\)= 4 + \(2\sqrt{4-3}\)

A\(^2\)= 4 +2=6

Vây A=\(\sqrt{6}\)

26 tháng 6 2017

Cảm ơn bn nhiều nha