\(\sqrt{1+2+3+.....+\left(n-1\right)+n+.....+3+2+1}\) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2020

Ta có : \(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=\sqrt{2\left(1+2+3+...+n-1\right)+n}\)

\(=\sqrt{2\left(n-1\right).\left(n-1+1\right):2+n}=\sqrt{\left(n-1\right).n+n}=\sqrt{\left(n-1+1\right).n}=\sqrt{n^2}=n\)

8 tháng 1 2017

\(A=1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)

\(B=\left(n-1\right)+..+2+1=\frac{\left(n-1\right)n}{2}\)

\(A+n+B=\frac{\left(n-1\right)n}{2}+n+\frac{\left(n-1\right)n}{2}=\left(n-1\right)n+n=n^2\)

n là tự nhiên \(\sqrt{n^2}=n\)

Đặt \(A=\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)

\(A=\sqrt{2\left(1+2+...+n-1\right)+n}\)

\(A=\sqrt{\frac{2\left(n-1\right)n}{2}+n}=\sqrt{n^2}=n\)

Vậy: \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)=n

\(a,3^{n+2}-3^{n+1}+6.3^n\) 

\(=3^n\left(3^2-3+6\right)=3^n.12\)

\(b,\left(3.2^{n+2}+2^n+2^{n+1}\right):5\)

\(=\left[2^n\left(3.2^2+1+2\right)\right]:5\)

\(=2^n.15:5\)

\(=2^n.3\)

25 tháng 11 2017

\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\\ =\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\\ =\sqrt{2.\left(n+1\right).n:2-n}\\ =\sqrt{n\left(n+1\right)-n}\\ =\sqrt{n^2+n-n}\\ =\sqrt{n^2}\\ =n\)