K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

\(\left(3+\frac{3-\sqrt{3}}{1-\sqrt{3}}\right)\left(\frac{\sqrt{21}+\sqrt{7}}{\sqrt{7}}+2\right)\)

\(=\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)\)

\(=3^2-\left(\sqrt{3}\right)^2\)

\(=9-3\)

\(=6\)

\(=\left(3-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right)\left(\dfrac{\sqrt{7}\left(\sqrt{3}+1\right)}{\sqrt{7}}+2\right)\)

\(=\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)\)

=9-3=6

28 tháng 6 2019

a. \(=\sqrt{2}.\left(\sqrt{7}+\sqrt{8}\right)\sqrt{5-\sqrt{3}\sqrt{7}}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{3-2\sqrt{3}.\sqrt{7}+7}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{7}+\sqrt{8}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

Rồi nhân ra. bạn làm tiếp nhé. Tuy nhiên minh nghĩ bạn bị nhầm đề. là \(\sqrt{6}\) chứ không phải căn 16

b. \(=\frac{5\left(\sqrt{21}+1\right)}{21-16}+\frac{\sqrt{3}.\sqrt{7}\left(\sqrt{3}-\sqrt{7}\right)}{-\left(\sqrt{3}-\sqrt{7}\right)}\)

\(=\sqrt{21}+4-\sqrt{21}=4\)

Mình coi lại r  \(\sqrt{16}\) nhé

12 tháng 8 2019

Câu 1,2,3 Ez quá rồi :3

Câu 4:

Tổng quát:

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v

12 tháng 8 2019

Câu 5 ko khác câu 4 lắm :v

Câu 5: 

Tổng quát:

\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v

a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=5-3-\sqrt{5}\)

\(=2-\sqrt{5}\)

b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)

\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)

\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)

\(=2\sqrt{3}+\sqrt{6}\)

c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)

\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)

\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)

\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)

\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))

\(=\sqrt{3}+\frac{8}{3}\)

d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)

\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)

\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)

\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=6-3\sqrt{3}\)