\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2016

\(\Rightarrow B=\frac{\sqrt{b}\left(\sqrt{ab}-b\right)-\sqrt{a}\left(a-\sqrt{ab}\right)}{\left(a-\sqrt{ab}\right)\left(\sqrt{ab}-b\right)}-\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\frac{b\sqrt{a}-\sqrt{b}^3-\sqrt{a}^3+a\sqrt{b}}{a\sqrt{ab}-ab-ab+b\sqrt{ab}}-\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\frac{\left(b\sqrt{a}+a\sqrt{b}\right)-\left(\sqrt{a}^3+\sqrt{b}^3\right)}{a\sqrt{ab}-2ab+b\sqrt{ab}}-\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\frac{\sqrt{ab}\left(\sqrt{b}+\sqrt{a}\right)-\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}\left(a-2\sqrt{ab}+b\right)}-\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{ab}-a+\sqrt{ab}-b\right)}{\sqrt{ab}.\left(\sqrt{a}-\sqrt{b}\right)^2}-\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=-\frac{\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)^2}-\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{-\sqrt{a}-\sqrt{b}-ab\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

 

Tớ làm tới đây thui 

22 tháng 11 2015

\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\left[1+\frac{\sqrt{a}\cdot\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right]\cdot\left[1-\frac{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right]\)

\(=\left(1+\sqrt{a}\right)\cdot\left(1-\sqrt{a}\right)\)

= 1 - a

a) \(\frac{-6}{21}.\frac{3}{2}=-\frac{3}{7}\)          b) \(\left(-3\right).\left(\frac{-7}{12}\right)=\frac{21}{12}=\frac{7}{4}\)

c) \(\left(\frac{11}{12}:\frac{33}{16}\right).\frac{3}{5}=\frac{11}{12}.\frac{16}{33}.\frac{3}{5}=\frac{4}{15}\)

d) \(\sqrt{\left(-7\right)^2}+\sqrt{\frac{2}{16}}=7+\sqrt{\frac{1}{8}}\)

c) \(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0=\frac{1}{2}.10-\frac{1}{4}+1=5\frac{3}{4}\)

8 tháng 1 2019

a,\(\frac{x}{\sqrt{x}+1}=\frac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}\)

\(=\left(\sqrt{x}-1\right)+\frac{1}{\sqrt{x}-1}+2\ge2.\sqrt{\left(\sqrt{x}-1\right).\frac{1}{\sqrt{x}-1}+2}\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\)

\(\Leftrightarrow\sqrt{x}-1=1\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\left(t/m\right)\)

Dmin = 4  <=> x=4

b,\(\frac{\sqrt{x-9}}{5x}\) 

\(\sqrt{x-9}=\sqrt{\frac{\left(x-9\right).9}{9}}=\frac{1}{3}.\sqrt{\left(x-9\right).9}\le\frac{1}{3}.\frac{x-9+9}{2}=\frac{x}{2}\)

\(\Rightarrow D\le\frac{x}{\frac{6}{5x}}=\frac{x}{30x}=\frac{1}{30}\)

Dấu "=" xảy ra \(\Leftrightarrow x-9=9\Leftrightarrow x=18\)

Dmax=\(\frac{1}{30}\Leftrightarrow x=18\)

P/s : ko chắc lắm 

\(a)\)\(P=\frac{x}{\sqrt{x}+1}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}-\frac{2\sqrt{x}+2}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)

\(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)

\(P=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}-2\ge2\sqrt{\left(\sqrt{x}+1\right).\frac{1}{\sqrt{x}+1}}-2=2-2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\sqrt{x}+1=\frac{1}{\sqrt{x}+1}\)\(\Leftrightarrow\)\(x=0\)

... 

20 tháng 8 2020

a. \(\left(2-\frac{3}{4}\right)^2:\frac{11}{16}=\frac{5}{4}^2.\frac{11}{16}=\frac{25}{16}.\frac{16}{11}=\frac{25}{11}\)

b. \(2^3.\frac{7}{20}+\frac{7}{10}=8.\frac{7}{20}+\frac{7}{10}=\frac{14}{5}+\frac{7}{10}=\frac{7}{2}\)

c. \(\sqrt{3^2+4^2}-\sqrt{1^3+2^3+3^3}=\sqrt{9+16}-\sqrt{1+8+27}\)

\(=\sqrt{25}-\sqrt{36}=5-6=-1\)

d. \(21^3:\left(-7\right)^3=\left(21:\left(-7\right)\right)^3=-3^3=-27\)

a) \(\left(2-\frac{3}{4}\right)^2\div\frac{11}{16}=\left(\frac{5}{4}\right)^2.\frac{16}{11}=\frac{25}{16}.\frac{16}{11}=\frac{25}{11}\)

b) \(2^3.\frac{7}{20}+\frac{7}{10}=8.\frac{7}{20}+\frac{7}{10}=\frac{14}{5}+\frac{7}{10}=\frac{7}{2}\)

c) \(\sqrt{3^2+4^2}-\sqrt{1^3+2^3+3^3}=\sqrt{9+16}-\sqrt{1+8+27}\)

\(=\sqrt{25}-\sqrt{36}=5-6=-1\)

d) \(\frac{21^3}{\left(-7\right)^3}=\frac{9261}{-343}=-27\)