Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{2a-1}.\sqrt{5a^4\left(2a-1\right)^2}=\sqrt{5}a^2.\frac{\left|2a-1\right|}{2a-1}\)
Nếu \(a>\frac{1}{2}\) thì \(B=\sqrt{5}a^2\)
Nếu \(a< \frac{1}{2}\) thì \(B=-\sqrt{5}a^2\)
\(B=\frac{1}{2a-1}\sqrt{5a^4\left(1-4a+4a^2\right)}\)
\(B=\frac{2\left|a\right|}{2a-1}\sqrt{5\left[1-2.2a+\left(2a\right)^2\right]}\)
\(B=\frac{2a}{2a-1}\sqrt{5\left(1-2a\right)^2}\)
\(B=\frac{2a\left|1-2a\right|}{2a-1}\sqrt{5}\)
\(=\frac{2a\left(2a-1\right)}{2a-1}\sqrt{5}=2a\sqrt{5}\)
\(ĐKXĐ:a\ne\frac{1}{2}\)
\(B=\frac{1}{2a-1}.\sqrt{5a^4.\left(1-4a+4a^2\right)}\)
\(=\frac{1}{2a-1}.\sqrt{5a^4.\left(1-2a\right)^2}\)
\(=\frac{1}{2a-1}.\sqrt{5}.\sqrt{a^4}.\sqrt{\left(1-2a\right)^2}\)
\(=\frac{1}{2a-1}.\sqrt{5}.a^2.\left|1-2a\right|=\frac{\sqrt{5}.a^2.\left|1-2a\right|}{2a-1}\)
+) Nếu \(a< \frac{1}{2}\)\(\Rightarrow\left|1-2a\right|=1-2a=-\left(2a-1\right)\)
\(\Rightarrow B=\frac{-\sqrt{5}.a^2.\left(2a-1\right)}{2a-1}=-\sqrt{5}.a^2\)
+) Nếu \(a>\frac{1}{2}\)\(\Rightarrow\left|1-2a\right|=-\left(1-2a\right)=-1+2a=2a-1\)
\(\Rightarrow B=\frac{\sqrt{5}.a^2.\left(2a-1\right)}{2a-1}=\sqrt{5}.a^2\)
\(\frac{2}{2a-1}.\sqrt{5x^4\left(1-4a+4a^2\right)}\)
\(=\frac{2}{2a-1}.\sqrt{5x^4\left(2a-1\right)^2}\)
\(=\frac{2}{2a-1}.x^2.\left(2a-1\right).\sqrt{5}\)
\(=2\sqrt{5}x^2\)
Giải:
\(\dfrac{1}{2a-1}.\sqrt{5a^4.\left(1-4a+4a^2\right)}\)
\(=\dfrac{1}{2a-1}.\sqrt{5a^4}.\sqrt{1-4a+4a^2}\)
\(=\dfrac{1}{2a-1}.a^2\sqrt{5}.\sqrt{\left(1-2a\right)^2}\)
\(=\dfrac{1}{2a-1}.a^2\sqrt{5}.\left|1-2a\right|\)
\(=\dfrac{\left|2a-1\right|.a^2\sqrt{5}}{2a-1}\left(1\right)\)
Chắc đề thiếu điều kiện, mình cho thêm để ra kết quả đẹp
ĐK: \(a\ge1\Leftrightarrow2a\ge2\Leftrightarrow2a-1\ge1>0\)
\(\left(1\right)=\dfrac{\left(2a-1\right).a^2\sqrt{5}}{2a-1}\)
\(=a^2\sqrt{5}\)
Vậy ...
Ha Hoang CTV, sao bạn bỏ được dấu giá trị tuyệt đối của 1-2a vậy??
\(=\dfrac{2\sqrt{5}\left|a\left(2a-1\right)\right|}{2a-1}=\dfrac{2a\left(2a-1\right)\sqrt{5}}{2a-1}=2a\sqrt{5}\)
\(=\dfrac{2\sqrt{5}\cdot a\left(2a-1\right)}{2a-1}=2a\sqrt{5}\)
\(a.A=\dfrac{2}{x^2-y^2}.\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x+y\right)\sqrt{3}}{2}=\dfrac{\sqrt{3}}{x-y}\) ( x # y )
\(b.\dfrac{1}{2x-1}.\sqrt{5a^4\left(1-4x+4a^2\right)}=\dfrac{1}{2a-1}.\left(2a-1\right)a^2\sqrt{5}=a^2\sqrt{5}\) ( a # \(\dfrac{1}{2}\) )
Ta có: \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}=\frac{2}{2a-1}.\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.a\sqrt{5}.\left(2a-1\right)=2a\sqrt{5}\)
\(E=\dfrac{1}{2a-1}\sqrt{5a^4\left(1-4a+4a^2\right)}\left(a\ne\dfrac{1}{2}\right)\)
\(=\dfrac{1}{2a-1}\sqrt{5\left(a^2\right)^2\left(1-2a\right)^2}=\dfrac{1}{2a-1}\sqrt{5}.a^2.\left|1-2a\right|\)
Xét \(a>\dfrac{1}{2}\Rightarrow1-2a< 0\Rightarrow\dfrac{1}{2a-1}\sqrt{5}.a^2.\left|1-2a\right|\)
\(=\dfrac{1}{2a-1}\sqrt{5}.a^2.\left(2a-1\right)=\sqrt{5}a^2\)
Xét \(a< \dfrac{1}{2}\Rightarrow1-2a>0\Rightarrow\dfrac{1}{2a-1}\sqrt{5}.a^2.\left|1-2a\right|\)
\(=\dfrac{1}{2a-1}\sqrt{5}.a^2.\left(1-2a\right)=-\sqrt{5}a^2\)
\(E=\dfrac{1}{2a-1}\sqrt{5a^4\left(2a-1\right)^2}=\dfrac{a^2.\left|2a-1\right|.\sqrt{5}}{2a-1}\)
- Với \(2a-1>0\Rightarrow a>\dfrac{1}{2}\) thì \(E=\dfrac{a^2\left(2a-1\right).\sqrt{5}}{2a-1}=a^2\sqrt{5}\)
- Với \(a< \dfrac{1}{2}\) thì \(E=\dfrac{-a^2.\left(2a-1\right).\sqrt{5}}{2a-1}=-a^2\sqrt{5}\)