\(B=\frac{\sqrt{8+\sqrt{40+8\sqrt{5}}}+\sqrt{8-\sqrt{40+8\sqrt{5}}}}{\sqrt{50}+\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2015

Mẫu số bằng \(\sqrt{50}+\sqrt{250}=5\sqrt{2}+5\sqrt{10}=5\sqrt{2}\left(1+\sqrt{5}\right).\)

Kí hiệu tử số là \(A\) thì ta có 

\(A^2=\left(\sqrt{8+\sqrt{40+8\sqrt{5}}}+\sqrt{8-\sqrt{40+8\sqrt{5}}}\right)^2\)

       \(=8+\sqrt{40+8\sqrt{5}}+2\sqrt{8+\sqrt{40+8\sqrt{5}}}\cdot\sqrt{8-\sqrt{40+8\sqrt{5}}}+8-\sqrt{40+8\sqrt{5}}\)

       \(=16+2\sqrt{\left(8+\sqrt{40+8\sqrt{5}}\right)\left(8-\sqrt{40+8\sqrt{5}}\right)}\)

      \(=16+2\sqrt{8^2-\left(40+8\sqrt{5}\right)}=16+2\sqrt{24-8\sqrt{5}}\)

      \(=16+2\sqrt{4-2\cdot2\cdot2\sqrt{5}+\left(2\sqrt{5}\right)^2}=16+2\sqrt{\left(2-2\sqrt{5}\right)^2}\)

      \(=16+2\left|2-2\sqrt{5}\right|=16-4+4\sqrt{5}=12+4\sqrt{5}=4\left(3+\sqrt{5}\right).\)

Vậy  \(A=4\left(3+\sqrt{5}\right)=2\left(6+2\sqrt{5}\right)=2\left(\sqrt{5}+1\right)^2.\)

Thành thử  \(B=\frac{2\left(\sqrt{5}+1\right)^2}{5\sqrt{2}\left(1+\sqrt{5}\right)}=\frac{\sqrt{2}\left(\sqrt{5}+1\right)}{5}=\frac{\sqrt{10}+\sqrt{2}}{5}.\)

2 tháng 8 2017

\(A=4-\sqrt{21-8\sqrt{5}}=4-\sqrt{4^2-8\sqrt{5}+\left(\sqrt{5}\right)^2}.\)

\(A=4-\sqrt{\left(4-\sqrt{5}\right)^2}=4-\left(4-\sqrt{5}\right)\)

=> \(A=\sqrt{5}\)

14 tháng 6 2018

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

2 tháng 7 2019

\(a,\left(\sqrt{27}-2\sqrt{17}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)

\(=3\sqrt{21}-2\sqrt{119}+7+7\sqrt{8}\)

Đề sai chăng???

2 tháng 7 2019

\(b,\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)

\(=\sqrt{2-2\sqrt{2}+1}+\sqrt{2+2\sqrt{2}+1}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}\)

\(=\sqrt{2}-1+\sqrt{2}+1\)

\(=2\sqrt{2}\)

\(c,9\sqrt{2}-4\sqrt{8}-\sqrt{50}+2\sqrt{32}\)

\(=9\sqrt{2}-8\sqrt{2}-5\sqrt{2}+8\sqrt{2}\)

\(=\sqrt{2}\left(9-8-5+8\right)\)

\(=4\sqrt{2}\)

\(d,\sqrt{3-2\sqrt{2}}-\sqrt{6+4\sqrt{2}}\)

\(=\sqrt{2-2\sqrt{2}+1}-\sqrt{4+2.2\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=\sqrt{2}-1-2-\sqrt{2}\)

\(=-3\)

NV
19 tháng 3 2019

a/ \(2\sqrt{10}-10\sqrt{10}+9\sqrt{10}=\sqrt{10}\)

b/ \(\frac{-1\left(4-3\sqrt{2}\right)+1\left(4+3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\frac{-4+3\sqrt{2}+4+3\sqrt{2}}{16-18}=\frac{6\sqrt{2}}{-2}=-3\sqrt{2}\)

c/ \(\left(3+\sqrt{5}\right).\sqrt{2}.\sqrt{7-3\sqrt{5}}=\left(3+\sqrt{5}\right)\sqrt{14-6\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)=9-5=4\)

d/ \(3\sqrt{2}-4\sqrt{2}+5\sqrt{2}=4\sqrt{2}\)

e/ \(\sqrt{19+8\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(4+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=4+\sqrt{3}+2-\sqrt{3}=6\)

18 tháng 7 2017

\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{2}-\sqrt{5}\)

=\(\sqrt{8+\sqrt{2.4}+\sqrt{5.4}+\sqrt{10.4}}-\sqrt{2}-\sqrt{5}\)

=\(\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{2}-\sqrt{5}\)

=\(\sqrt{\left(\sqrt{1}\right)^2+\left(\sqrt{2}\right)^2+\left(\sqrt{5}\right)^2+2.\sqrt{2}.\sqrt{1}+2\sqrt{1}.\sqrt{5}+2\sqrt{5}.\sqrt{2}}-\sqrt{2}-\sqrt{5}\)

=\(\sqrt{\left(\sqrt{1}+\sqrt{2}+\sqrt{5}\right)^2}\)

= \(\sqrt{1}+\sqrt{2}+\sqrt{5}\)

18 tháng 7 2017

phần trên mk làm thiếu \(-\sqrt{2}-\sqrt{5}\)

kết quả là 1 mới đúng