Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)
\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)
\(=8+2\sqrt{5}-2=6+2\sqrt{5}\)
\(=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)
\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)
\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)
\(=10,94430659\)
\(\text{Lm hơi vắn tắt thông cảm nha!!}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt \(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
\(A^2=5-2\sqrt{6}+2\sqrt{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}+5+2\sqrt{6}\)
\(=10+2\sqrt{25-4.6}=10+2\sqrt{1}=10+2=12\)
\(\Rightarrow A=\sqrt{12}\)
b)\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}.\sqrt{5}-\sqrt{2}}{\sqrt{5}-1}+\frac{\sqrt{2}.\sqrt{2}-\sqrt{2}}{\sqrt{2}-1}\)
\(=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn quy đồng nha,,nhóm cái căn3 + căn 5 thành 1 nhóm,,,rồi quy đồng \(\sqrt{2}-\left(\sqrt{3}+\sqrt{5}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{\sqrt{2.5}-\sqrt{2}}{\sqrt{5}-1}+\frac{\left(\sqrt{2}\right)^2-\sqrt{2}}{\sqrt{2}-1}\)
\(=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)
\(=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
b) \(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)
\(=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)
\(=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
(Hai bài náy đều tương tự nhau bạn ạ, nhớ k cho mình với nhé, chúc bạn học tốt!)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)
\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)
\(=\frac{27\sqrt{2}}{4}\cdot8\)
\(=54\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{6-\sqrt{6}}{\sqrt{6}-1}+\frac{6+\sqrt{6}}{\sqrt{6}}\)\(=\frac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}+\frac{6}{\sqrt{6}}+\frac{\sqrt{6}}{\sqrt{6}}\)\(=\sqrt{6}+\frac{6}{\sqrt{6}}+1\)\(=\sqrt{6}\left(1+\frac{\sqrt{6}}{\sqrt{6}}\right)+1\)\(=\sqrt{6}\left(1+1\right)+1\)\(=\sqrt{6}.2+1\)
\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)\(=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)\(=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3\sqrt{20}+9}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-I\sqrt{20}-3I}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)\(=\sqrt{\sqrt{5}-I\sqrt{5}-1I}\)\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)\(=\sqrt{1}=1\)