K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

Bài 1:

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\left(do.a+b+c\ne0\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)

\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{\left(3a\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)

15 tháng 11 2021

Bài 2:

a) \(=\dfrac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}=\dfrac{x\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x+2}\)

b) \(=\dfrac{x\left(x+1\right)+7\left(x+1\right)}{x\left(x^2+2x+1\right)}=\dfrac{\left(x+1\right)\left(x+7\right)}{x\left(x+1\right)^2}=\dfrac{x+7}{x\left(x+1\right)}=\dfrac{x+7}{x^2+x}\)

\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

=b-a

19 tháng 11 2021

\(1,A=\dfrac{2x+1-x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\left(x-\sqrt{x}-2\right)\\ A=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\left(x+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+1}\\ 2,\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\Leftrightarrow y=-x-3\)

a: \(A=\dfrac{1}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}-1}{a-b}\)

\(=\dfrac{\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}+1}{a-b}=\dfrac{1}{a-b}\)

b: Khi a-b=1 thì A=1/1=1

22 tháng 8 2018

nghe cái tên là hết mún giúp rồi

AI THẤY HAY KO NGẠI CHO TŨN MỘT TÍCH NHA

22 tháng 11 2021

\(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}.\dfrac{1}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}.\dfrac{1}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{a-\sqrt{ab}+b}{\sqrt{ab}}\)

\(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)

=a-b

22 tháng 5 2022

Với `a > 0,b > 0,a \ne b` có:

   `[a+b-2\sqrt{ab}]/[\sqrt{a}-\sqrt{b}]:1/[\sqrt{a}+\sqrt{b}]`

`=[(\sqrt{a}-\sqrt{b})^2]/[\sqrt{a}-\sqrt{b}]. (\sqrt{a}+\sqrt{b})`

`=(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})`

`=a-b`

a: \(P=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b\)

4 tháng 11 2021

Bạn có thể giải chi tiết được ko?