Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}=2\sqrt{4.2.5\sqrt{4.3}}-2\sqrt{\sqrt{25.3}}-3\sqrt{5\sqrt{16.3}}\)
= \(2.2\sqrt{2.5.2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5.4\sqrt{3}}=4.2\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-3.2\sqrt{5\sqrt{3}}\)
= \(\sqrt{5\sqrt{3}}\left(8-2-6\right)=\sqrt{5\sqrt{3}}.0=0\)
b/ \(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}=2\sqrt{2.4\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{4.5\sqrt{3}}\)
= \(4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)
a) \(\sqrt{2-\sqrt{3}}=\frac{\sqrt{2}\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}}{\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{2}\)b) Tương tự câu a) nhân \(\sqrt{2}\)vào.......\(\sqrt{3+\sqrt{5}}=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.1+1^2}}{\sqrt{2}}=\frac{\sqrt{5}+1}{\sqrt{2}}=\frac{\sqrt{10}+\sqrt{2}}{2}\)
c) \(\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.1+1^2}=\sqrt{5}-1\)
d) \(\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2}=\sqrt{5}+2\)
P/s: Những chỗ khi khai căn do OnlineMath k có dấu trị tuyệt đối nên mình k nhập đc. Nhưng các biểu thức đó tất cả đều dương nên k cần đổi dấu. Mong các bạn thông cảm nhé!
\(\frac{\sqrt{9-4\sqrt{5}}}{2-\sqrt{5}}\)
= \(\frac{\sqrt{2^2-2\sqrt{5}2+\sqrt{5^2}}}{2-\sqrt{5}}\)
= \(\frac{\sqrt{\left(2-\sqrt{5}\right)^2}}{2-\sqrt{5}}\)
= \(\frac{\sqrt{5}-2}{2-\sqrt{5}}\)
= -1
Chúc bạn làm bài tốt :)
b, \(\frac{\sqrt{3}}{2+\sqrt{3}}-\frac{\sqrt{3}}{2-\sqrt{3}}\) = \(\frac{\sqrt{3}\left(2-\sqrt{3}\right)-\sqrt{3}\left(2+\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)=\(\frac{2\sqrt{3}-3-2\sqrt{3}-3}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)=\(\frac{-6}{4-3}\)=-6
c,\(\frac{2}{\sqrt{5}-2}-\frac{2}{\sqrt{5}+2}\)=\(\frac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)=\(\frac{2\sqrt{5}+4-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)=\(\frac{8}{1}\)=8
a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)
\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)
\(=\frac{27\sqrt{2}}{4}\cdot8\)
\(=54\sqrt{2}\)
Áp dụng HĐT: \(\left(a+b\right)^3=a^3+3ab\left(a+b\right)+b^3\)
\(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
=> \(A^3=2+\sqrt{5}+3.\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}.A+2-\sqrt{5}\)
\(=4-3A\)
=> \(A^3+3A-4=0\)
<=> \(\left(A-1\right)\left(A^2+A+4\right)=0\)
<=> \(A=1\)
p/s: chúc bạn học tốt