Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a. \(A=\frac{\left(\sqrt{x-2}\right)^2-3^2}{\sqrt{x-2}-3}=\frac{\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}+3\right)}{\sqrt{x-2}-3}=\sqrt{x-2}+3\)
b. \(B=\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}\)
\(=\frac{1-\sqrt{a}+1+\sqrt{a}}{2\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}=\frac{1}{1-a}-\frac{a^2+2}{\left(1-a\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a+1-a^2-2}{\left(1-a\right)\left(a^2+a+1\right)}=\frac{a-1}{\left(1-a\right)\left(a^2+a+1\right)}=-\frac{1}{a^2+a+1}\)
câu b là B=\(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}\) nhé, em ghi nhầm
\(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{a-1-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
\(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right).\)
\(A=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(A=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)\)
\(A=\frac{\sqrt{a}-2}{\sqrt{a}}\)
#)Giải :
a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)
\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)