K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

\(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

a: \(=x^2-xy+xy+y^2=x^2+y^2=100\)

\(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy=-2\cdot\dfrac{1}{2}\cdot\left(-100\right)=-1\cdot\left(-100\right)=100\)

30 tháng 5 2022

a)` x(x - y) + y(x + y) `

`=x^2-xy+xy+y^2`

`=x^2+y^2`(1)

thay x= -6 ; y= 8 vào 1 ta đc

\(\left(-6\right)^2+8^2=36+64=100\)

b)`) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) `

`=x^3-xy-x^3-xy+yx^2-xy`

`=\(-3xy+yx^2\)(2)

thay `x= 1/2 và y = -100` ta đc

\(-\dfrac{3.1}{2}.\left(-100\right)+\dfrac{\left(-100\right).1}{2}=150-50=100\)

4 tháng 8 2021

gúp mình với

 

4 tháng 8 2021

A = x ( x + y ) - y ( x + y )

A = ( x + y ) ( x - y )

A = x\(^2\) - y\(^2\)

Tại x = \(\dfrac{-1}{2}\) và y = -2 ta có 

\(\left(\dfrac{-1}{2}\right)^2-\left(-2\right)^2\) \(=\) \(\dfrac{-15}{4}\)

 

 

 

19 tháng 3 2022

`Answer:`

\( B=-4x^5.y+x^4.y^3-3x^2.y^3.z^2+4.x^5.y-2.y^4-x^4.y-x^4.y+3.y^4+4.y^2.x^2.z^2-y^4+\frac{1}{2}\)

\(=-4x^5y-3x^2y^3z^2+4x^y-2y^4+3y^4+4x^2y^3z^2-y^4+\frac{1}{2}\)

\(=-4x^5y+x^2y^3z^2+4x^y-2y^4+3y^4-y^4+\frac{1}{2}\)

\(=-4x^5y+x^2y^3z^2+4x^y+\frac{1}{2}\)

30 tháng 4 2016

B=-4x^5y+x^4y^3-3x^2y^3z^2+4x^5y-2y^4-x^4y-x^4y+3y^4+4y^2x^2z^2-y^4+\(\frac{1}{2}\)

  =(-4x^5y+4x^5y)+x^4y^3-3x^2y^3z^2+(2y^4+3y^4-y^4)+(-x^4y-x^4y)+4y^2x^2z^2+\(\frac{1}{2}\)

  =x^4y^3-3y^3z^2-2x^4y+4y^2x^2z^2+\(\frac{1}{2}\)

2 tháng 5 2016

ban oi mau tra loi di

4 tháng 8 2021

B=x2(x+y)-y(x2-y)+2014

   = x3+x2y-x2y+y2+2014

   = x3+y2+2014

   = 13+(-1)2+2014

   = 1+1+2014

   =2016

4 tháng 8 2021

B = x2.x+x2.y-y.x2+y.y+2014            Uy tín:)

  =  x3+x2y-x2y+y2+2014

  =  x3+y2+2014

Thay x=1;y=-1. Ta có:

B = 13+(-1)2+2014

   = 1+1+2014

   = 2016

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)