Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\text{)}.\:\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\\ =x^4+4x^2+4-\left(x^2-4\right)\left(x^2+4\right)\\ =x^4+4x^2+4-x^4+16\\ =4x^2+20\)
\(b\text{)}.\:\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\\ =\left(x+1+x-1\right)\left(x+1-x+1\right)-3\left(x^2-1\right)\\ =4x-3x^2+3\)
\(2\left(x-2\right)\left(x+3\right)-x^2+4=0\)
\(2\left(x^2+3x-2x-6\right)-x^2+4=0\)
\(2x^2+6x-4x-12-x^2+4=0\)
\(x^2+2x-8=0\)
\(x^2+4x-2x-8=0\)
\(x\left(x+4\right)-2\left(x+4\right)=0\)
\(\left(x+4\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+4=0\rightarrow x=\left(-4\right)\\x-2=0\rightarrow x=2\end{cases}}\)
3/
a/ \(2\left(x+1\right)^2-3\left(x-1\right)^2+\left(x+2\right)\left(5-x\right)\)
\(=2\left(x^2+2x+1\right)-3\left(x^2-2x+1\right)+\left(5x-x^2+10-2x\right)\)
\(=2x^2+4x+2-3x^2+6x-3+5x-x^2+10-2x\)
\(=-2x^2+13x+9\)
b/ \(\left(3x-1\right)^3+\left(3x-1\right)^3-6x^2+9\)
\(=2\left(3x-1\right)^3-6x^2+9\)
\(=2\left(\left(3x\right)^3-3\left(3x\right)^2\cdot1+3\cdot3x\cdot1-1\right)-6x^2+9\)
\(=2\left(27x^3-27x^2+9x-1\right)-6x^2+9\)
\(=54x^3-54x^2+18x-2-6x^2+9\)
\(=54x^3-60x^2+18x+7\)
Số hơi dài, nên dễ tính sai -,- tính mik hay cẩu thả có j sai ibbb ạ
1.a) (2 + 1)(22 + 1)((24 + 1)(28 + 1) = (22 - 1)(22 + 1)(24 + 1)(28 + 1) = (24 - 1)(24 + 1)(28 + 1)
= (28 - 1)(28 + 1) = 216 - 1
b) 7(23 + 1)(26 + 1)(212 + 1)(224 + 1) = (23 - 1)(23 + 1)(26 + 1)(212 + 1)(224 + 1)
= (26 - 1)(26 + 1)(212 + 1)(224 + 1) = (212 - 1)(212 + 1)(224 + 1) = (224 - 1)(224 + 1) = 248 - 1
c) (x2 - x + 1)(x2 + x + 1)(x2 - 1) = [(x2 - x + 1)(x + 1)][(x2 + x + 1)(x - 1)] = (x3 + 1)(x3 - 1) = x6 - 1
2. Đặt A = 4x - x2 - 1 = -(x^2 - 4x + 4) + 3 = -(x - 2)2 + 3 \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MaxA = 3 khi x = 2
\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)
\(=\left(x^8+x^4+1\right)\left(x^8-x^4+1\right)\)
\(=x^{16}+x^8+1\)
\(\left(x^2+x+1\right)\left(x^2-x-1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)
\(=\left(x^4-x^3-x^2+x^3-x^2-x+x^2-x-1\right)\) \(\left(x^{32}-x^{16}+x^4-x^{16}+x^8-x^2+x^8-x^4+1\right)\)
\(=\left(x^4-x^2-2x-1\right)\left(x^{32}-2x^{16}+2x^8-x^2+1\right)\)