Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(\(3+\dfrac{x}{3-x}+\dfrac{2x}{3+x}-\dfrac{4x^2-3x-9}{x^2-9}\) ):\(\left(\dfrac{2}{3-x}-\dfrac{x-1}{3x-x^2}\right)\)\(=\left(\dfrac{3x^2-27}{\left(x-3\right)\left(x+3\right)}+\dfrac{-x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{4x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\right)\)\(:\left(\dfrac{2x}{x\left(3-x\right)}-\dfrac{x-1}{x\left(3-x\right)}\right)\)
\(=\dfrac{3x^2-27-x^2-3x+2x^2-6x-4x^2+3x+9}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{-6x-18}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\) \(=\dfrac{-6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{6}{3-x}.\dfrac{x\left(x-3\right)}{x+1}\) \(=\dfrac{6x}{x+1}\)
a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)
\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)
\(=-16x+8\)
b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
=27x-55
\(x^2\left(1-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x^2-x^3+x^3+3^3\)
\(=x^2+27\)
\(A=\left(\dfrac{3x-x^2}{9-x^2}-1\right):\left(\dfrac{9-x^2}{x^2+x-6}+\dfrac{x-3}{2-x}-\dfrac{x+2}{x+3}\right)\left(dk:x\ne\pm3,x\ne2\right)\)
\(=\dfrac{3x-x^2-9+x^2}{9-x^2}:\left(\dfrac{9-x^2}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-3}{x-2}-\dfrac{x+2}{x+3}\right)\)
\(=\dfrac{3x-9}{9-x^2}:\dfrac{9-x^2-\left(x-3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=-\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-\left(x^2-9\right)-\left(x^2-4\right)}\)
\(=-\dfrac{3}{x+3}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-x^2+9-x^2+4}\)
\(=\dfrac{-3\left(x-2\right)}{22-3x^2}\)
\(=\dfrac{-3x+6}{22-3x^2}\)
Vậy \(A=\dfrac{-3x+6}{22-3x^2}\) với \(x\ne\pm3,x\ne2\)
Ta có: \(\left(\dfrac{x^2-3x}{x^2-9}-1\right):\left(\dfrac{9-x^2}{x^2+x-6}-\dfrac{x-3}{2-x}+\dfrac{x-2}{x+3}\right)\)
\(=\left(\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-1\right):\left(\dfrac{9-x^2+x^2-9+\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\right)\)
\(=\left(\dfrac{x}{x+3}-1\right):\dfrac{x-2}{x+3}\)
\(=\dfrac{x-x-3}{x+3}\cdot\dfrac{x+3}{x-2}\)
\(=\dfrac{-3}{x-2}\)
Điều kiện : x ≠ 2 ; x ≠ 3 ; x ≠ - 3
\(\left(\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-1\right):\left(\dfrac{\left(3-x\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-3}{2-x}+\dfrac{x-2}{x+3}\right)\)
\(=\left(\dfrac{x}{x+3}-1\right):\left(\dfrac{9-x^2+\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\right)\)
\(=\dfrac{x-x-3}{x+3}:\dfrac{9-x^2+x^2-9+\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{-3}{x+3}:\dfrac{x-2}{\left(x+3\right)}\)
\(=\dfrac{-3}{x-2}\)
\(=\left(x-3\right)\left(x^2+1-x^2-3x-9\right)\)
\(=\left(x-3\right)\left(-3x-8\right)\)
_Moon_
(x^2+1)(x-3) - (x-3)(x^2+3x+9)
=(x-3)[(x^2+1) - (x^2+3x+9)
=(x-3)(x^2+1-x^2-3x-9)
=(x-3)(-3x-8) = -3x^2-8x+9x+24
=-3x^2+x+24