
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(C=\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}.\)
\(C=\frac{1}{\left(x+3\right)^2}+\frac{-1}{-\left(6x-x^2-9\right)}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(C=\frac{1}{\left(x+3\right)^2}+\frac{-1}{-6x+x^2+9}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(C=\frac{x-3}{\left(x+3\right)\left(x-3\right)}+\frac{-\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(C=\frac{x-3.-x-3.x}{\left(x+3\right).\left(x-3\right)}=\frac{-6x}{\left(x+3\right)\left(x-3\right)}=\frac{-6x}{\left(x^2-9\right)}\)

1/(x^2+6x+9)-1/(x^2-6x+9)=(x-3)/(x-3)(x+3)-(x+3)/(x-3)(x+3)= -6/(x-3)(x+3)
1/(x+3)+1/(x-3)=

\(B=\left(2x-3\right)\left(4x^2+6x+9\right)-\left(x+1\right)^2-\left(x-2\right)^3\)
\(=8x^3-27-x^2-2x-1-x^3+6x^2-12x+8\)
\(=7x^3+5x^2-14x-20\)

9(x + 1)² - 16(y + 3)²
= 9(x² + 2x + 1) - 16(y² + 6y + 9)
= 9x² + 18x + 9 - 16y² - 96y - 144
= 9x² - 16y² + 18x - 96y - 135

mình chỉ biết làm một nửa k biết có đứng k bạn có chắc đề bài đúng k
5x^2 - 1^2 - (2x^3-3^3)= (5x^2-1x^2)-(2x^3-3^3) hdt số 3 và số 7
RÚT GỌN BIỂU THỨC
a) 32(x+2)(x-2)-1/2(6-8x)2 -48
b) (x+9)(x2+27)-(x+3)3
c) (6x+1)2(6x-1)2-2(1+6x)(6x-1)


ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
\(M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x-3}{2x}\left(1-\frac{6}{x-3}\right)\)
\(=\frac{x-3}{2x}.\frac{x-9}{x-3}=\frac{x-9}{2x}\)
\(M=\frac{\left(x-3\right)^2}{2x^2-6x}\left(1-\frac{6x+18}{x^2-9}\right)\left(x\ne\pm3;x\ne0\right)\)
\(\Leftrightarrow M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\left(1-\frac{6}{x-3}\right)\)
\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\frac{x-9}{x-3}\)
\(\Leftrightarrow M=\frac{x-9}{2x}\)
Vậy với \(x\ne\pm3;x\ne0\)thì \(M=\frac{x-9}{2x}\)

\(\left(+\right)A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right).\)
\(A=8x^3-6x^2-18x+27-8x^3+2\)
\(A=6x^2-18x+29\)
\(\left(+\right)B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x-1\right)\left(x+1\right)\)
\(B=x^3-3x^2+3x+1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)
\(B=-6x^2+6x^2-6\)
\(B=-6\)

\(N=\left(x^2+9x+1\right)^2-6\left(3x-1\right)\left(x^2+9x+1\right)+9\left(3x-1\right)^2\)
\(=\left(x^2+9x+1-9x+3\right)^2=\left(x^2+4\right)^2\)
\(\frac{\left(x-2\right)^2-1}{x^2-6x+9}=\frac{x^2-4x+4-1}{\left(x-3\right)^2}=\frac{x^2-4x+3}{\left(x-3\right)^2}\)
\(=\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)^2}=\frac{x-1}{x-3}\)